# Intelligent Systems (AI-2)

#### Computer Science cpsc422, Lecture 11

Oct, 3, 2016



CPSC 422, Lecture 11

#### 422 big picture: Where are we?

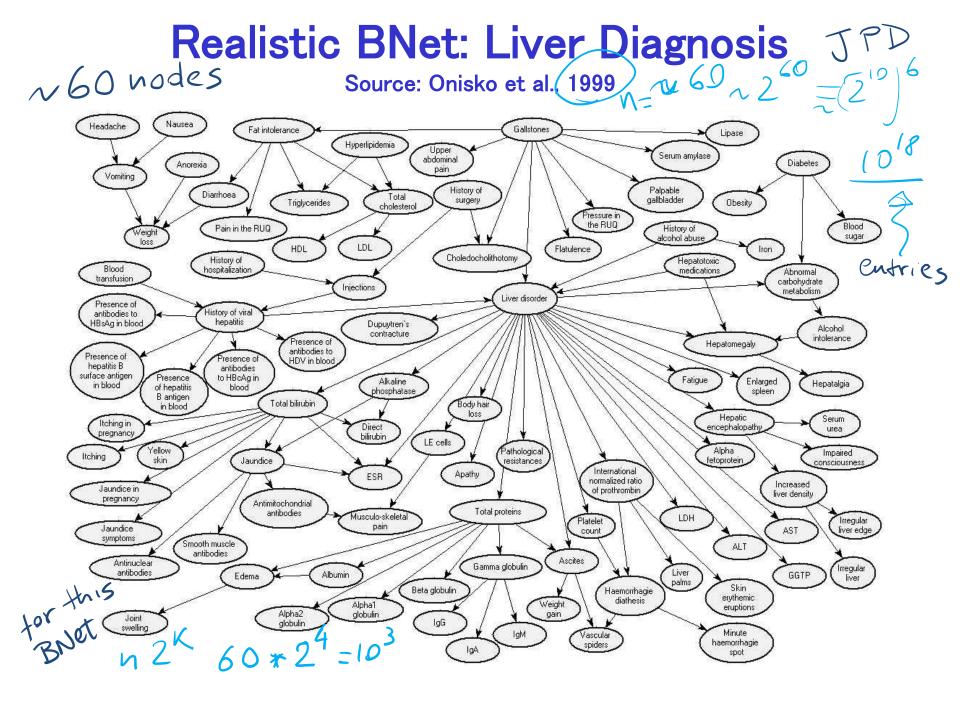
#### StarAI (statistical relational AI)

Hybrid: Det +Sto Prob CFG Prob Relational Models Markov Logics

|       | Deterministic                                                                             | Stochastic Markov I                                                                                                                                                                                                                                                                                                                 | Logics                 |
|-------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Query | Logics<br>First Order Logics<br>Ontologies<br>Temporal rep.<br>• Full Resolution<br>• SAT | Belief Nets         Approx. : Gibbs         Markov Chains and HMMs         Forward, Viterbi···.         Approx. : Particle Filtering         Undirected Graphical Models         Markov Networks         Conditional Random Fields         Markov Decision Processes and         Partially Observable MDP         • Value Iteration |                        |
|       |                                                                                           | Approx. Inference <i>Reinforcement Learning</i>                                                                                                                                                                                                                                                                                     | Representation         |
|       | Applicatio                                                                                | ons of AI                                                                                                                                                                                                                                                                                                                           | Reasoning<br>Technique |

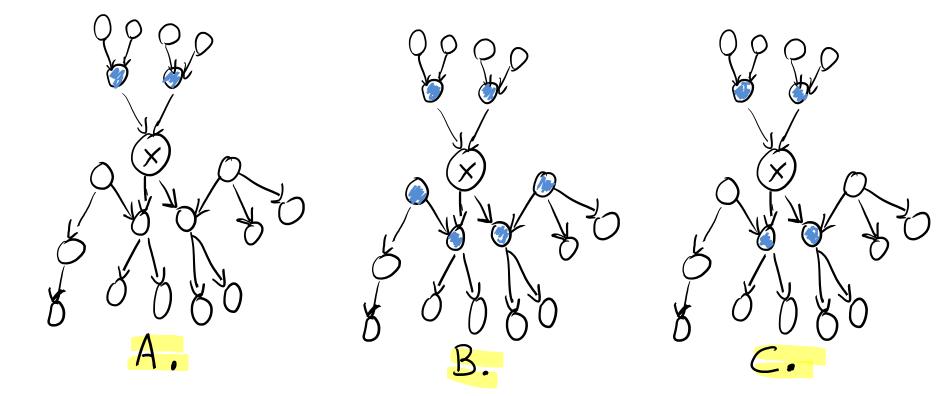
# Lecture Overview

- **Recap of BNs** Representation and Exact Inference
- Start Belief Networks Approx. Reasoning
  - Intro to Sampling
  - First Naïve Approx. Method: Forward Sampling
  - Second Method: Rejection Sampling



# Revise (in)dependencies .....

# Independence (Markov Blanket)



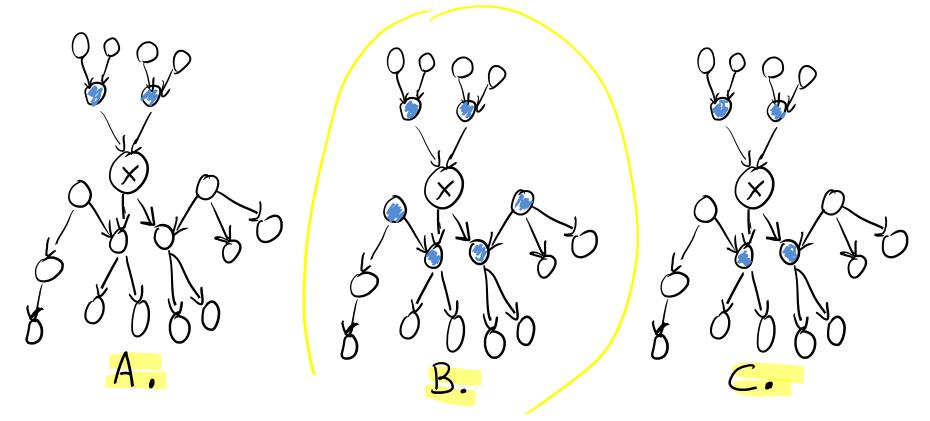
What is the minimal set of nodes that must be observed in order to make **node X** independent from all the non-observed nodes in the network



Slide 8

CPSC 422, Lecture 11

# Independence (Markov Blanket)



A node is conditionally independent from all the other nodes in the network, given its parents, children, and children's parents (i.e., its **Markov Blanket** ) Configuration B

CPSC 422, Lecture 11

### Variable elimination algorithm: Summary

 $P(Z, Y_1, Y_i, Z_1, Z_i)$ 

# To compute $P(Z|Y_1=v_1, \cdots, Y_j=v_j)$ :

- 1. Construct a factor for each conditional probability.
- 2. Set the observed variables to their observed values.
- 3. Given an <u>elimination ordering</u>, <u>simplify/decompose</u> sum of products
  - For all  $Z_i$ : Perform products and sum out  $Z_i$
- 4. Multiply the remaining factors (all in ? Z)
- 5. Normalize: divide the resulting factor f(Z) by  $\sum_{Z} f(Z)$ .

# Variable elimination ordering

 $P(G,D=t) = \sum_{A,B,C} f(A,G) f(B,A) f(C,G,A) f(B,C)$  $\sum_{A} f(A,G) \sum_{B} f(B,A) \sum_{C} f(C,G,A) f(B,C)$ CBA BCA  $\sum_{A} f(A,G) \sum_{C} f(C,G,A) \sum_{B} f(B,C) f(B,A)$ 

### Complexity: Just Intuition...

- Tree-width of a network given an elimination ordering: max number of variables in a factor created while running VE.
- Tree-width of a belief network : min tree-width over all elimination orderings (only on the graph structure and is a measure of the sparseness of the graph)

- The complexity of VE is exponential in the tree-width 🛞 and linear in the number of variables.
- Also, finding the elimination ordering with minimum tree-width is NP-hard 🟵 (but there are some good elimination ordering heuristics)

# Lecture Overview

- **Recap of BNs** Representation and Exact Inference
- Start Belief Networks Approx. Reasoning
  - Intro to Sampling
  - First Naïve Approx. Method: Forward Sampling
  - Second Method: Rejection Sampling

# **Approximate Inference**

#### Basic idea:

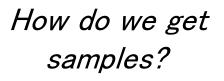
- Draw N samples from known prob. distributions
- Use those samples to estimate unknown prob. distributions

#### Why sample?

 Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

#### We use *Sampling*

Sampling is a process to obtain samples adequate to estimate an unknown probability



Samples



Known prob. distribution(s)

Estimates for unknown (hard to compute) distribution(s)

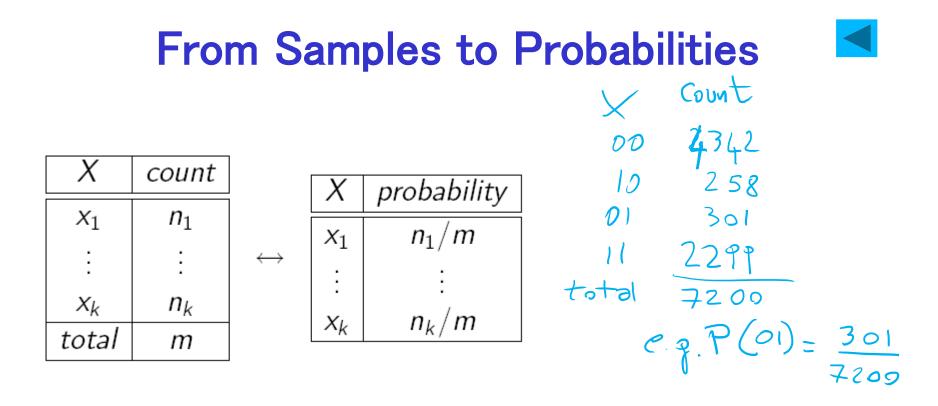
#### **Generating Samples from a Known Distribution**

For a random variable X with

- values  $\{x_1, \dots, x_k\}$
- Probability distribution  $P(X) = \{P(x_1), \dots, P(x_k)\}$
- Partition the interval [0, 1] into k intervals  $p_i$ , one for each  $x_i$ , with length  $P(x_i)$
- To generate one sample
  - ✓ Randomly generate a value y in [0, 1] (i.e. generate a value from a uniform distribution over [0, 1].
  - ✓ Select the value of the sample based on the interval  $p_i$  that includes y

From probability theory:  $P(y \subset p_i) = Length(p_i) = P(x_i)$ 

$$29, 5, c^{2}, 5, 6$$



Count total number of samples *m* 

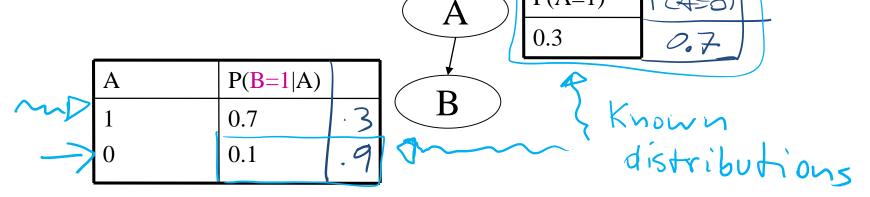
Count the number  $n_i$  of samples  $x_i$ 

Generate the frequency of sample  $x_i$  as  $n_i / m$ 

This frequency is your estimated probability of  $x_i$ 

# Sampling for Bayesian Networks (N)

Suppose we have the following BN with two binary variables P(A=1)P(A=0)



 $\succ$  It corresponds to the joint probability distribution

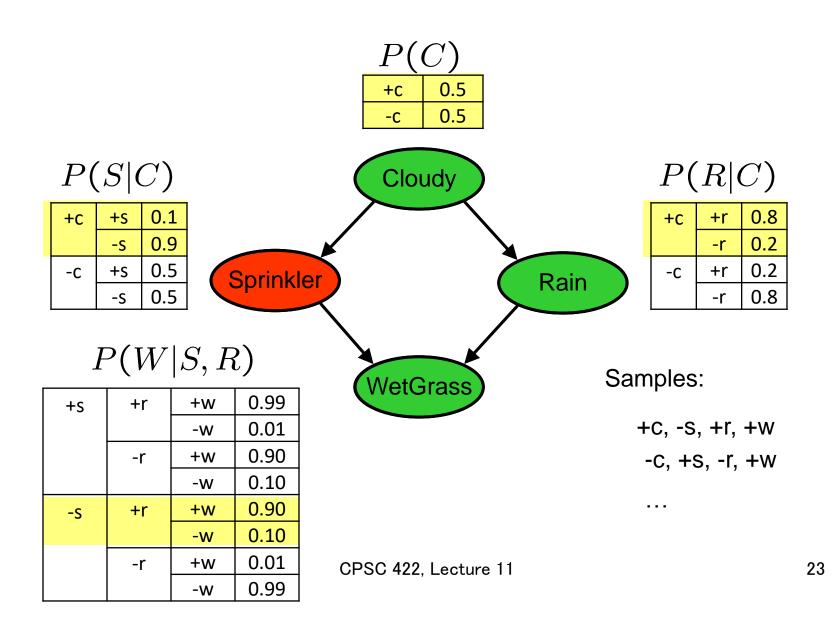
P(A,B) = P(B|A)P(A)

• P(A,B) = P(B|A)F(A)> To sample from P(A,B) i.e., unknown distribution

- we first sample from P(A). Suppose we get A = 0.
- In this case, we then sample from  $\mathbb{P}(B | A = 0)$ ٠
- If we had sampled (A = 1) then in the second step we would have sampled • from

B -1

# **Prior (Forward) Sampling**



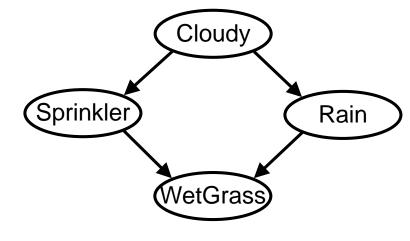
#### Example

We'll get a bunch of samples from the BN:

+c, -s, +r, +w +c, +s, +r, +w -c, +s, +r, -w +c, -s, +r, +w -c, -s, -r, +w

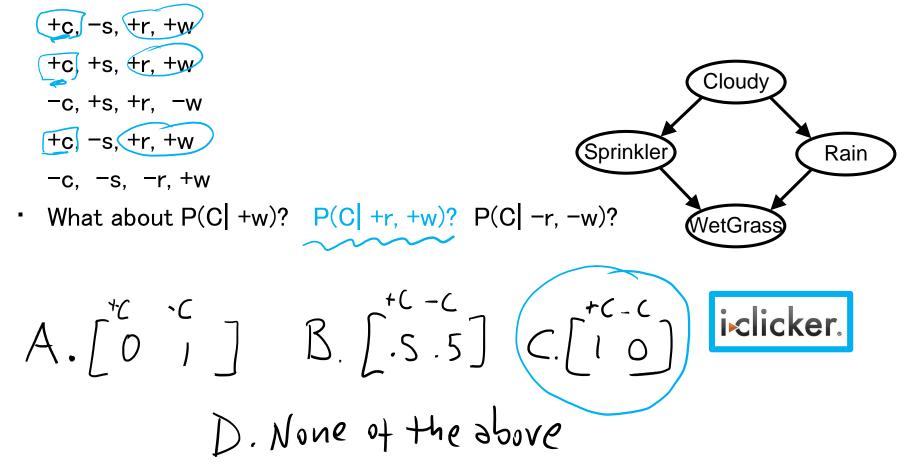
If we want to know P(W)

- We have counts <+w:4, -w:1>
- Normalize to get  $P(W) = \langle +W : 2 \rangle$
- This will get closer to the true distribution with more samples



#### Example

Can estimate anything else from the samples, besides P(W), P(R), etc:



Can use/generate fewer samples when we want to estimate a probability conditioned on evidence?

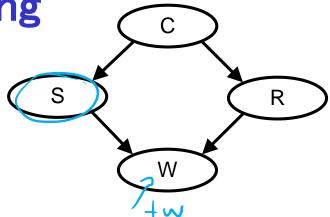
CPSC 422, Lecture 11

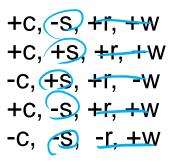
# **Rejection Sampling**

Let's say we want P(S +w)

- Ignore (reject) samples which don't have W=+w
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)

See any problem as the number of evidence vars increases?





# Hoeffding's inequality

- Suppose *p* is the true probability and *s* is the sample average from *n* independent samples.  $P(|s-p| > \varepsilon) \le 2e^{-2n\varepsilon^2}$
- > p above can be the probability of any event for random variable  $X = {X_1, \dots, X_n}$  described by a Bayesian network
- > If you want an infinitely small probability of having an error greater than  $\mathcal{E}_{,}$  you need infinitely many samples
- > But if you settle on something less than infinitely small, let's say  $\delta$ , then you just need to set

$$2e^{-2n\varepsilon^2} < \delta$$

So you pick

- the error  $\mathcal{E}$  you can tolerate,
- the frequency  $\delta$  with which you can tolerate it
- And solve for *n*, i.e., the number of samples that can ensure this performance  $1 = \delta$

$$n > \frac{-\ln\frac{\delta}{2}}{2\varepsilon^2} \qquad (1)$$

# Hoeffding's inequality

> Examples:

• You can tolerate an error greater than 0.1 only in 5% of your cases

 $n > \frac{-\ln \frac{o}{2}}{2\varepsilon^2}$ 

con rewrite (

- Set  $\varepsilon$  =0.1,  $\delta$  = 0.05
- Equation (1) gives you n > 184

- If you can tolerate the same error (0.1) only in 1% of the cases, then you need 265 samples
- If you want an error greater than 0.01 in no more than 5% of the cases, you need 18,445 samples
  so it should be clear that
  J goes down

# Learning Goals for today's class

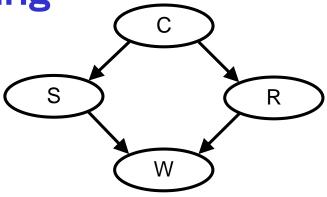
### ≻You can:

- Motivate the need for approx inference in Bnets
- Describe and compare Sampling from a single random variable
- Describe and Apply Forward Sampling in BN
- Describe and Apply Rejection Sampling
- Apply Hoeffding's inequality to compute number of samples needed

# **TODO for Wed**

- Read textbook 6.4.2
- Assignment-2 will be out today: Start working on it
- Next research paper will be this coming Fri

# **Rejection Sampling**



Let's say we want P(C)

- No point keeping all samples around
- Just tally counts of C as we go

#### Let's say we want P(C|+s)

- Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)
   CPSC 422, Lecture 11

+C, -S, +r, +W +C, +S, +r, +W -C, +S, +r, -W +C, -S, +r, +W -C, -S, -r, +W