Intelligent Systems (AI-2)

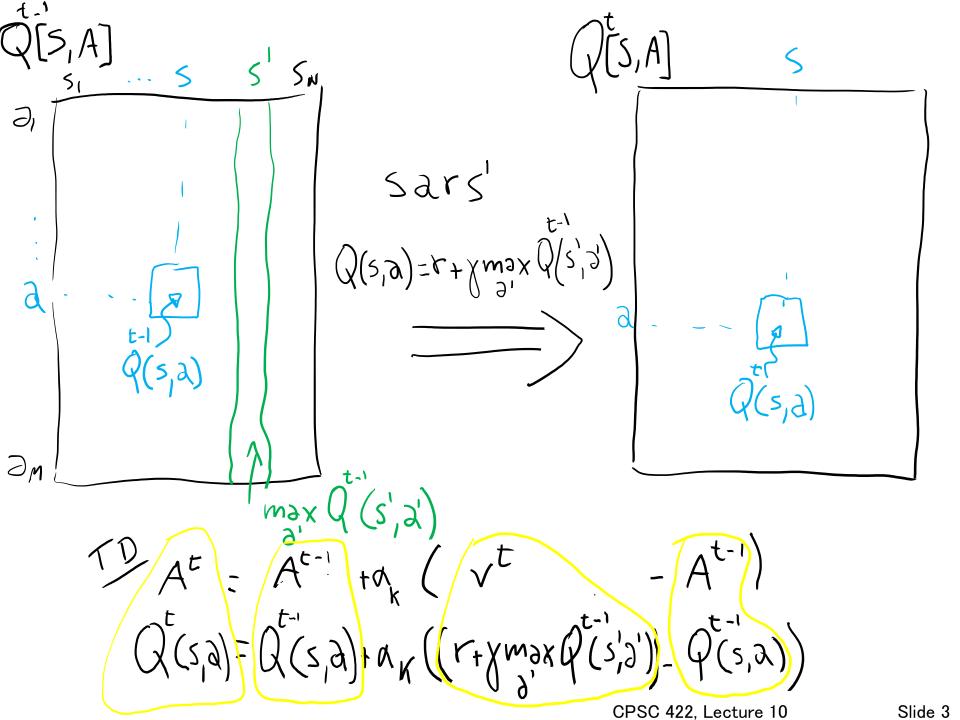
Computer Science cpsc422, Lecture 10

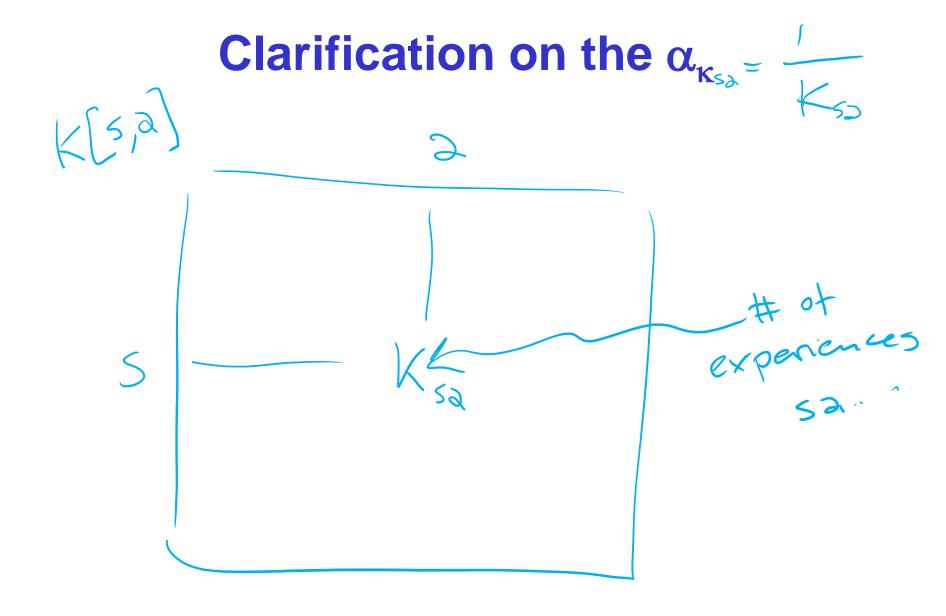
Sep, 30, 2016

Lecture Overview

Finish Reinforcement learning

- Exploration vs. Exploitation
- On-policy Learning (SARSA)
- Scalability





What Does Q-Learning learn

Q-learning does not explicitly tell the agent what to do....

- Given the Q-function the agent can.....
- either exploit it or explore more....
- Any effective strategy should
 - Choose the predicted best action in the limit
 - Try each action an unbounded number of times
- We will look at two exploration strategies
 - ε-greedy
 - soft-max

Soft-Max

- When in state s, Takes into account improvement in estimates of expected reward function Q[s,a] for all the actions
 - Choose action a in state s with a probability proportional to current estimate of Q[s,a]

$$\frac{e^{Q[s,a]}}{\sum_{a} e^{Q[s,a]}} \qquad \qquad \frac{e^{Q[s,a]/\tau}}{\sum_{a} e^{Q[s,a]/\tau}}$$

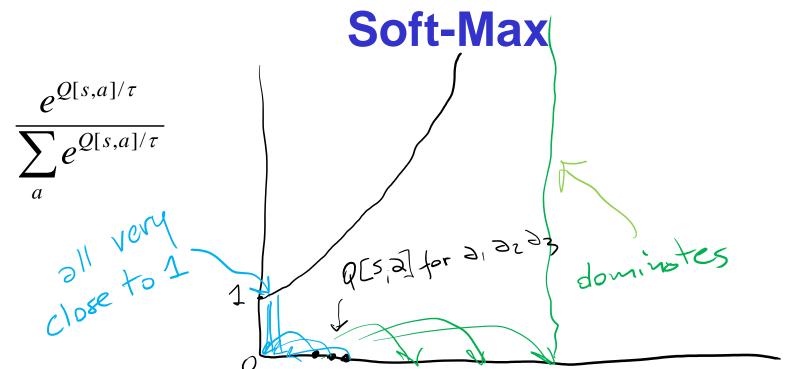
- τ (tau) in the formula above influences how randomly values should be chosen
 - if τ is high, >> Q[s,a]?
 - A. It will mainly exploit
 - B. It will mainly explore
 - C. It will do both with equal probability

Soft-Max

- Takes into account improvement in estimates of expected reward function Q[s,a]
 - Choose action a in state s with a probability proportional to current estimate of Q[s,a]

$$\frac{e^{Q[s,a]/\tau}}{\sum_{a} e^{Q[s,a]/\tau}}$$

- τ (tau) in the formula above influences how randomly values should be chosen
 - if τ is high, the exponentials approach 1, the fraction approaches 1/(number of actions), and each action has approximately the same probability of being chosen (exploration or exploitation?)
 - as $\tau \to 0$, the exponential with the highest Q[s,a] dominates, and the current best action is always chosen (exploration or exploitation?)



- τ (tau) in the formula above influences how randomly values should be chosen
 - if τ is high, the exponentials approach 1, the fraction approaches 1/(number of actions), and each action has approximately the same probability of being chosen (exploration or exploitation?)
 - as $\tau \to 0$, the exponential with the highest Q[s,a] dominates, and the current best action is always chosen (exploration or exploitation?)

Lecture Overview

Finish Reinforcement learning

- Exploration vs. Exploitation
- On-policy Learning (SARSA)
- RL scalability

Learning before vs. during deployment

- > Our learning agent can:
 - A. act in the environment to learn how it works (before deployment)
 - B. Learn as you go (after deployment)
- If there is time to learn before deployment, the agent should try to do its best to learn as much as possible about the environment
 - even engage in locally suboptimal behaviors, because this will guarantee reaching an optimal policy in the long run
- If learning while "at work", suboptimal behaviors could be costly

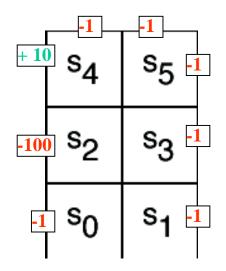
Comment Sept 2015

Best way to present this

- For a set is not deployed it should do random all the time (ε=1) and Q-learning
 - When Q values have converged then deploy
- > If the agent is deployed it should apply one of the explore/exploit strategies (e.g., ϵ =.5) and do sarsa

Example

- Consider, for instance, our sample grid game:
 - the optimal policy is to go up in S₀
 - But if the agent includes some exploration in its policy (e.g. selects 20% of its actions randomly), exploring in S₂ could be dangerous because it may cause hitting the -100 wall
 - No big deal if the agent is not deployed yet, but not ideal otherwise
 - Q-learning would not detect this problem
 - It does off-policy learning, i.e., it focuses on the optimal policy
 - > On-policy learning addresses this problem



On-policy learning: SARSA

- On-policy learning learns the value of the policy being followed.
 - e.g., act greedily 80% of the time and act randomly 20% of the time
 - Better to be aware of the consequences of exploration has it happens, and avoid outcomes that are too costly while acting, rather than looking for the true optimal policy

➢ SARSA

- So called because it uses <state, action, reward, state, action> experiences rather than the <state, action, reward, state> used by Q-learning
- Instead of looking for the best action at every step, it evaluates the actions suggested by the current policy
- Uses this info to revise it

On-policy learning: SARSA

Given an experience <s,a,r,s',a' >, SARSA updates Q[s,a] as follows

$$Q[s,a] \leftarrow Q[s,a] + \alpha((r + \gamma Q[s',a']) - Q[s,a])$$

What's different from Q-learning?

On-policy learning: SARSA

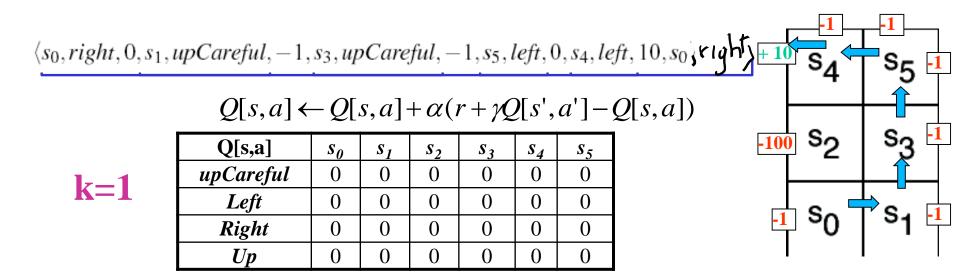
Given an experience <s ,a, r, s', a'>, SARSA updates Q[s,a] as follows

 $Q[s,a] \leftarrow Q[s,a] + \alpha((r + \gamma Q[s',a']) - Q[s,a])$

While Q-learning was using

 $Q[s,a] \leftarrow Q[s,a] + \alpha((r + \gamma \max_{a'} Q[s',a']) - Q[s,a])$

There is no more max operator in the equation, there is instead the Q-value of the action suggested by the current policy



 $Q[s_0, right] \leftarrow Q[s_0, right] + \alpha_k (r + 0.9Q[s_1, UpCareful] - Q[s_0, right]);$ $Q[s_0, right] \leftarrow$

 $Q[s_1, upCarfull] \leftarrow Q[s_1, upCarfull] + \alpha_k (r + 0.9Q[s_3, UpCareful] - Q[s_1, upCarfull]);$ $Q[s_1, upCarfull] \leftarrow$

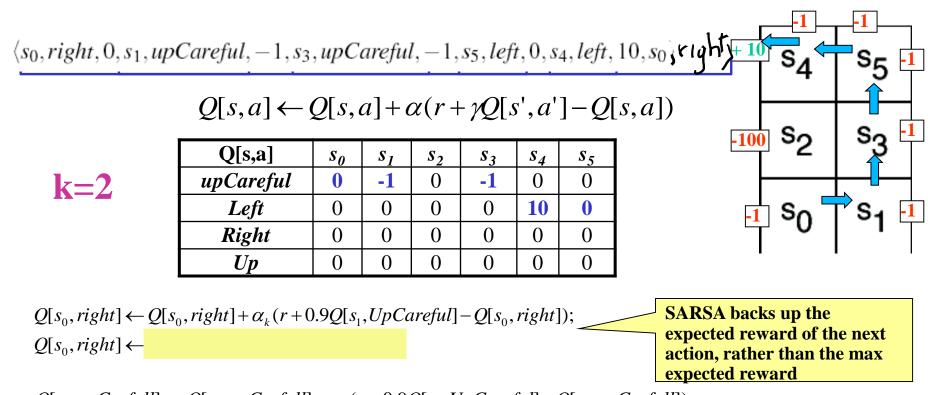
 $\begin{aligned} Q[s_3, upCarfull] \leftarrow Q[s_3, upCarfull] + \alpha_k(r + 0.9Q[s_5, Left] - Q[s_3, upCarfull]); \\ Q[s_3, upCarfull] \leftarrow 0 + 1(-1 + 0.9 * 0 - 0) = -1 \end{aligned}$

 $\begin{aligned} Q[s_5, Left] \leftarrow Q[s_5, Left] + \alpha_k(r + 0.9Q[s_4, left] - Q[s_5, Left]); \\ Q[s_5, Left] \leftarrow 0 + 1(0 + 0.9 * 0 - 0) = 0 \end{aligned}$

Only immediate rewards are included in the update, as with Q-learning

 $\begin{aligned} Q[s_4, Left] &\leftarrow Q[s_4, Left] + \alpha_k (r + 0.9Q[s_0, Right] - Q[s_4, Left]); \\ Q[s_4, Left] &\leftarrow 0 + 1(10 + 0.9 * 0 - 0) = 10 \end{aligned}$

21



 $Q[s_1, upCarfull] \leftarrow Q[s_1, upCarfull] + \alpha_k (r + 0.9Q[s_3, UpCareful] - Q[s_1, upCarfull]);$ $Q[s_1, upCarfull] \leftarrow$

 $\begin{aligned} Q[s_3, upCarfull] \leftarrow Q[s_3, upCarfull] + \alpha_k(r + 0.9Q[s_5, Left] - Q[s_3, upCarfull]); \\ Q[s_3, upCarfull] \leftarrow -1 + 1/2(-1 + 0.9 * 0 + 1) = -1 \end{aligned}$

 $Q[s_5, Left] \leftarrow Q[s_5, Left] + \alpha_k(r + 0.9Q[s_4, left] - Q[s_5, Left]);$ $Q[s_5, Left] \leftarrow 0 + 1/2(0 + 0.9*10 - 0) = 4.5$

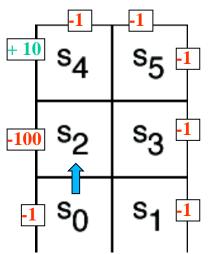
 $Q[s_4, Left] \leftarrow Q[s_4, Left] + \alpha_k (r + 0.9Q[s_0, Right] - Q[s_4, Left]);$ $Q[s_4, Left] \leftarrow 10 + 1/2(10 + 0.9 * 0 - 10) = 10$

Comparing SARSA and Q-learning

For the little 6-states world

Policy learned by Q-learning 80% greedy is to go up in s₀ to reach s₄ quickly and get the big +10 reward

Iterations	Q[s ₀ ,Up]	Q[s ₁ ,Up]	Q[s ₂ ,UpC]	Q[s ₃ ,Up]	Q[s ₄ ,Left]	Q[s ₅ ,Left]
4000000	19.1	17.5	22.7	20.4	26.8	23.7



 Verify running full demo, see http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html

Comparing SARSA and Q-learning

- > Policy learned by SARSA 80% greedy is to go *right* in s_0
- > Safer because avoid the chance of getting the -100 reward in s_2
- but non-optimal => lower q-values

Iterations	Q[s ₀ ,Right]	Q[s ₁ ,Up]	Q[s ₂ ,UpC]	Q[s ₃ ,Up]	Q[s ₄ ,Left]	Q[s ₅ ,Left]
4000000	6.8	8.1	12.3	10.4	15.6	13.2
		<mark>₁</mark> s₀	⊳ \$1 ⁻¹		CPSC	C 422, Lecture 10

 Verify running full demo, see http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html

SARSA Algorithm

begin

greedy strategy: initialize Q[S, A] arbitrarily -Choose random ε times, and max observe current state s the rest select action a using a policy based on Qrepeat forever: If the random step is chosen carry out an action a here, and has a bad negative observe reward r and state s' reward, this will affect the select action a' using a policy based on Qvalue of Q[s,a]. $Q[s, a] \leftarrow Q[s, a] + \alpha (r + \gamma Q[s', a'] - Q[s, a])$ $s \leftarrow s'$: Next time in s, a may no longer be the action selected $a \leftarrow a';$ because of its lowered Q end-repeat value end

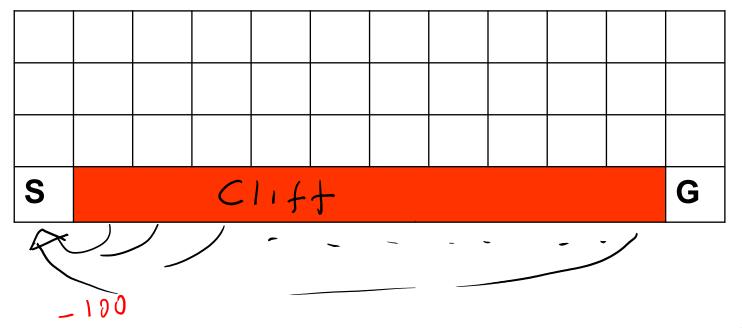
This could be, for instance any ε -

Another Example

Gridworld with:

- Deterministic actions up, down, left, right
- Start from **S** and arrive at **G** (terminal state with reward > 0)
- Reward is -1 for all transitions, except those into the region marked "Cliff"

 \checkmark Falling into the cliff causes the agent to be sent back to start: r = -100

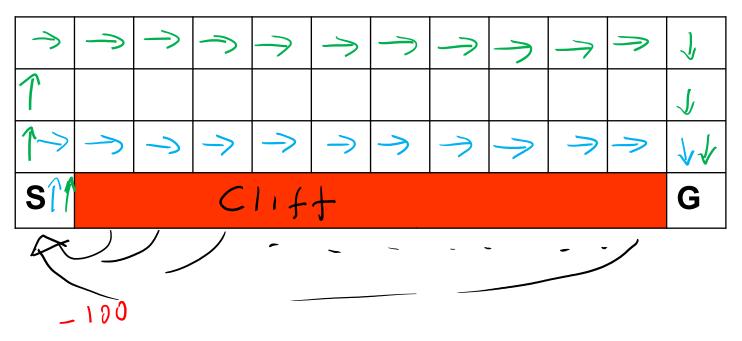


- > With an ϵ -greedy strategy (e.g., $\epsilon = 0.1$)
 - A. SARSA will learn policy p1 while Q-learning will learn p2

B. Q-learning will learn policy p1 while SARSA will learn p2

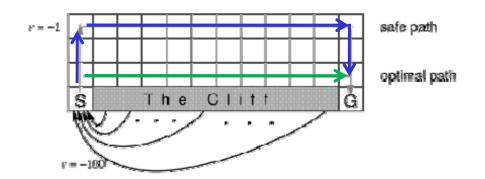
C. They will both learn p1

D. They will both learn p2



iclicker.

Cliff Example



- Because of negative reward for every step taken, the optimal policy over the four standard actions is to take the shortest path along the cliff
- > But if the agents adopt an ϵ -greedy action selection strategy with ϵ =0.1, walking along the cliff is dangerous
 - The optimal path that considers exploration is to go around as far as possible from the cliff

Q-learning vs. SARSA



- Q-learning learns the optimal policy, but because it does so without taking exploration into account, it does not do so well while the agent is exploring
 - It occasionally falls into the cliff, so its reward per episode is not that great
- SARSA has better on-line performance (reward per episode), because it learns to stay away from the cliff while exploring
 - But note that if $\epsilon{\rightarrow}0,$ SARSA and Q-learning would asymptotically converge to the optimal policy

422 big picture: Where are we?

Hybrid: Det +Sto

Prob CFG Prob Relational Models Markov Logics

	Deterministic	Stochastic Ma	arkov Logics				
Query	Logics First Order Logics Ontologies Temporal rep. • Full Resolution • SAT	Belief Nets Approx. : Gibbs Markov Chains and HMMs Forward, Viterbi···. Approx. : Particle Filterin Undirected Graphical Mode Conditional Random Field Markov Decision Processes Partially Observable MDP	g e/s 				
Planning		Value Iteration Approx. Inference <i>Reinforcement Learning</i>	Representation				
	Applicatio	Reasoning Technique					
	CPSC 322, Lecture 34						

Learning Goals for today's class

≻You can:

- Describe and compare techniques to combine exploration with exploitation
- On-policy Learning (SARSA)
- Discuss trade-offs in RL scalability (not required)

TODO for Mon

- Read textbook 6.4.2
- Next research paper will be next Fri
- Practice Ex 11.B

• Assignment 1 due on Mon

Problem with Model-free methods

> Q-learning and SARSA are model-free methods

What does this mean?

Problems With Model-free Methods

> Q-learning and SARSA are model-free methods

- They do not need to learn the transition and/or reward model, they are implicitly taken into account via experiences
- Sounds handy, but there is a main disadvantage:
 - How often does the agent get to update its Q-estimates?

Problems with Model-free Methods

> Q-learning and SARSA are model-free methods

- They do not need to learn the transition and/or reward model, they are implicitly taken into account via experiences
- Sounds handy, but there is a main disadvantage:
 - How often does the agent get to update its Q-estimates?
 - Only after a new experience comes in
 - Great if the agent acts very frequently, not so great if actions are sparse, because it wastes computation time

Model-based methods

≻ Idea

- learn the MDP and interleave acting and planning.
- ➢ After each experience,
 - update probabilities and the reward,
 - do some steps of value iteration (asynchronous) to get better estimates of state utilities U(s) given the current model and reward function
 - Remember that there is the following link between Q values and utility values

$$U(s) = \max_{a} Q(a, s) \qquad (1)$$

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) U(s')$$
(2)

$$Q(s,a) = R(s) + \gamma \sum_{\substack{s' \\ \text{CPSC 422, Lecture 10}}} P(s'|s,a) \max_{a'} Q(s',a')$$

37

VI algorithm

function VALUE-ITERATION(mdp, ϵ) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a), rewards R(s), discount γ ϵ , the maximum error allowed in the utility of any state

local variables: U, U', vectors of utilities for states in S, initially zero

 δ , the maximum change in the utility of any state in an iteration

repeat

 $\begin{array}{l} U \leftarrow U'; \, \delta \leftarrow 0 \\ \text{for each state } s \text{ in } S \text{ do} \\ U'[s] \leftarrow R(s) \, + \, \gamma \, \max_{a \, \in \, A(s)} \, \sum_{s'} P(s' \, | \, s, a) \, U[s'] \\ \text{if } |U'[s] \, - \, U[s]| \, > \, \delta \text{ then } \delta \leftarrow |U'[s] \, - \, U[s]| \\ \text{until } \delta \, < \, \epsilon(1 - \gamma)/\gamma \\ \text{return } U \end{array}$

Asynchronous Value Iteration

- The "basic" version of value iteration applies the Bellman update to all states at every iteration
- \succ This is in fact not necessary
 - On each iteration we can apply the update only to a chosen subset of states
 - Given certain conditions on the value function used to initialize the process, asynchronous value iteration converges to an optimal policy
- Main advantage
 - one can design heuristics that allow the algorithm to concentrate on states that are likely to belong to the optimal policy
 - Much faster convergence

Asynchronous VI algorithm

function VALUE-ITERATION(mdp, ϵ) returns a utility function inputs: mdp, an MDP with states S, transition model T, reward function R, discount γ ϵ , the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero δ , the maximum change in the utility of any state in an iteration

repeat

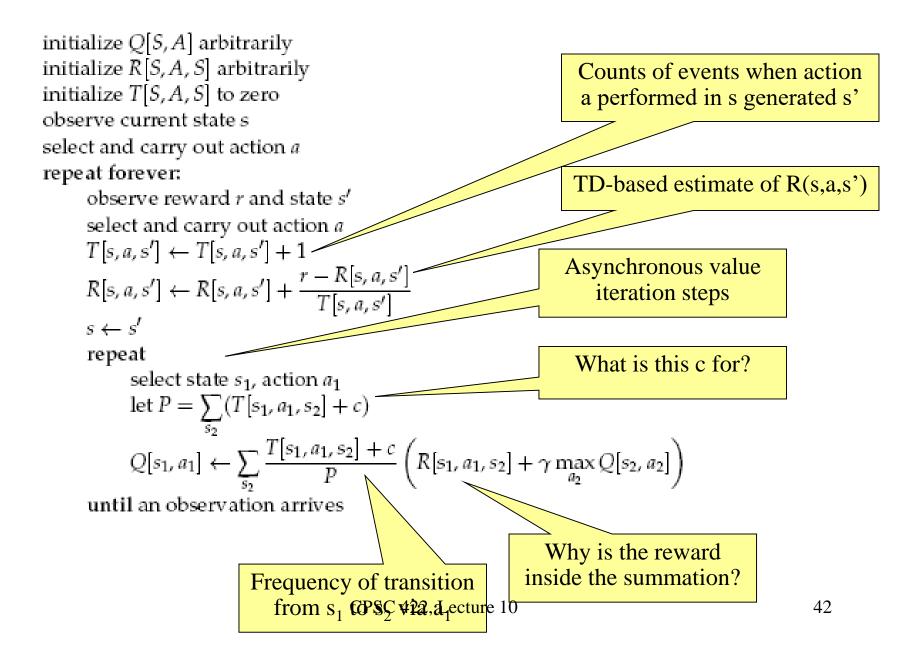
 $U \leftarrow U'; \delta \leftarrow 0$ for some state s in S do $U'[s] \leftarrow R[s] + \gamma \max_{a} \sum_{s'} T(s, a, s') U[s']$ if $|U'[s] - U[s]| > \delta$ then $\delta \leftarrow |U'[s] - U[s]|$ until $\delta < \epsilon(1 - \gamma)/\gamma$ return U

Model-based RL algorithm

Model Based Reinfortcement Learner inputs:

S is a set of states, A is a set of actions, γ the discount, c is a prior count internal state:

real array *Q[S,A]*, *R[S,A, S']* integer array *T[S,A, S']* previous state *s* previous action *a*



Discussion

> Which Q values should asynchronous VI update?

- At least *s* in which the action was generated
- Then either select states randomly, or
- States that are likely to get their Q-values changed because they can reach states with Q-values that have changed the most
- How many steps of asynchronous value-iteration to perform?

Discussion

- > Which states to update?
 - At least *s* in which the action was generated
 - Then either select states randomly, or
 - States that are likely to get their Q-values changed because they can reach states with Q-values that have changed the most
- How many steps of asynchronous value-iteration to perform?
 - As many as can be done before having to act again

Q-learning vs. Model-based

- ➤ Is it better to learn a model and a utility function or an action value function with no model?
 - Still an open-question
- Model-based approaches require less data to learn well, but they can be computationally more expensive (time per iteration)
- Q-learning takes longer because it does not enforce consistency among Q-values via the model
 - Especially true when the environment becomes more complex
 - In games such as chess and backgammon, model-based approaches have been more successful that q-learning methods
- Cost/ease of acting needs to be factored in