UBC Department of Computer Science Undergraduate Events

More details @ https://my.cs.ubc.ca/students/development/events

Simba Technologies Tech Talk/ Info Session

Mon., Sept 21 6 – 7 pm DMP 310

EA Info Session

Tues., Sept 22 6 – 7 pm DMP 310

Co-op Drop-in FAQ Session

Thurs., Sept 24 12:30 – 1:30 pm Reboot Cafe

Resume Editing Drop-in Sessions

Mon., Sept 28 10 am – 2 pm (sign up at 9 am) ICCS 253

Facebook Crush Your Code Workshop

Mon., Sept 28 6 – 8 pm DMP 310

UBC Careers Day & Professional School Fair

Wed., Sept 30 & Thurs., Oct 1 10 am – 3 pm AMS Nest

Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 6

Sep, 21, 2015

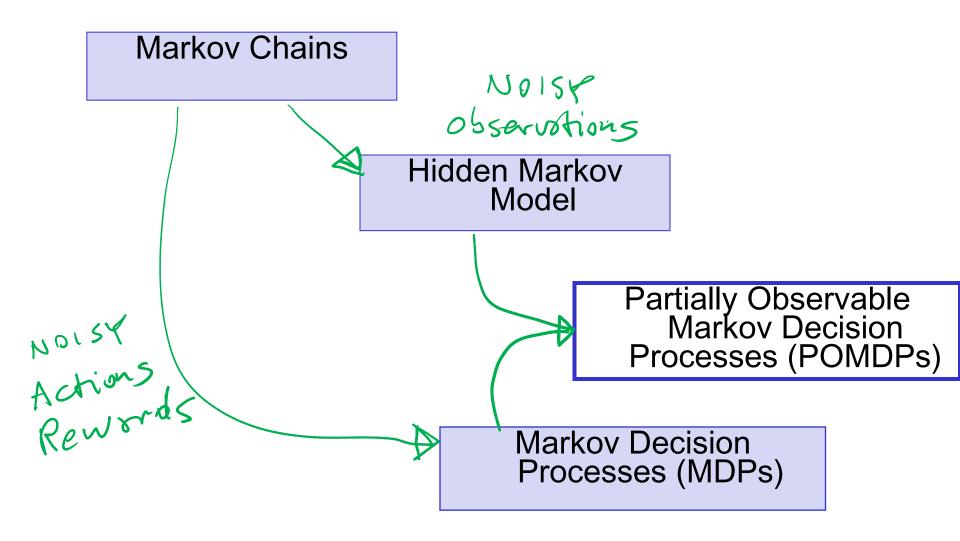
Slide credit POMDP: C. Conati and P. Viswanathan

Lecture Overview

Partially Observable Markov Decision Processes

- Summary
 - Belief State
 - Belief State Update
- Policies and Optimal Policy

Markov Models



Belief State and its Update

$$b'(s') = \alpha P(e \mid s') \sum_{s} P(s' \mid s, a) b(s)$$
as
$$b' = Forward(b, a, e)$$

- To summarize: when the agent performs action **a** in belief state **b**, and then receives observation **e**, filtering gives a unique new probability distribution over state
 - deterministic transition from one belief state to another

 CPSC422. Lecture 6

Optimal Policies in POMDs?

- > Theorem (Astrom, 1965):
 - The optimal policy in a POMDP is a function $\pi^*(b)$ where b is the belief state (probability distribution over states)
- \succ That is, $\pi^*(b)$ is a function from belief states (probability distributions) to actions
 - It does not depend on the actual state the agent is in
 - Good, because the agent does not know that, all it knows are its beliefs!
- Decision Cycle for a POMDP agent
 - Given current belief state b, execute $a = \pi^*(b)$
 - Receive observation e
 - compute: $b'(s') = \alpha P(e|s') \sum P(s'|s,a)b(s)$
 - Repeat

How to Find an Optimal Policy?

- ?
- Turn a POMDP into a corresponding MDP and then solve that MDP
- Generalize VI to work on POMDPs
- ➤ Develop Approx. Methods
 - Point-Based VI
 - Look Ahead

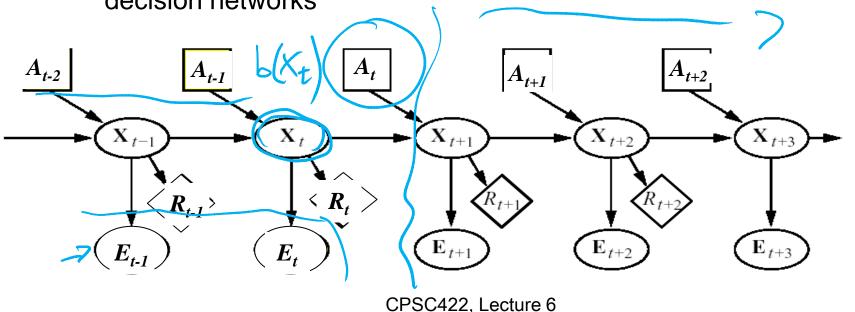
Finding the Optimal Policy: State of the Art

- Turn a POMDP into a corresponding MDP and then apply VI: only small models
- Generalize VI to work on POMDPs
 - 10 states in 1998
 - 200,000 states in 2008-09
- Develop Approx. Methods
 - Point-Based VI and Look Ahead
 - Even 50,000,000 states http://www.cs.uwaterloo.ca/~ppoupart/software.html

Dynamic Decision Networks (DDN)

- Comprehensive approach to agent design in partially observable, stochastic environments
- Basic elements of the approach
 - Transition and observation models are represented via a Dynamic Bayesian Network (DBN).

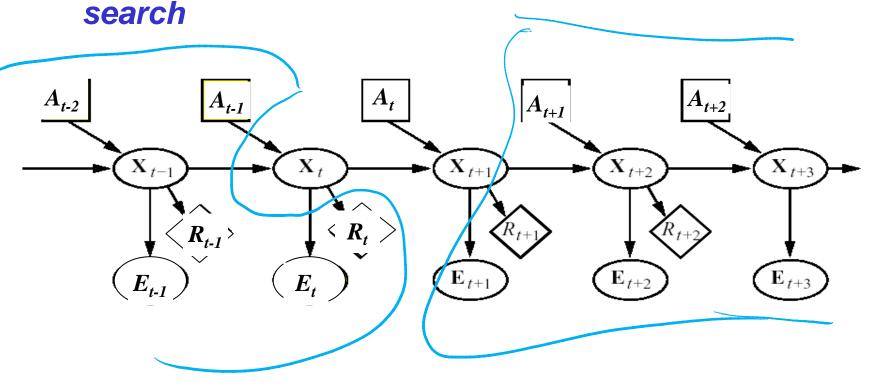
 The network is extended with decision and utility nodes, as done in decision networks



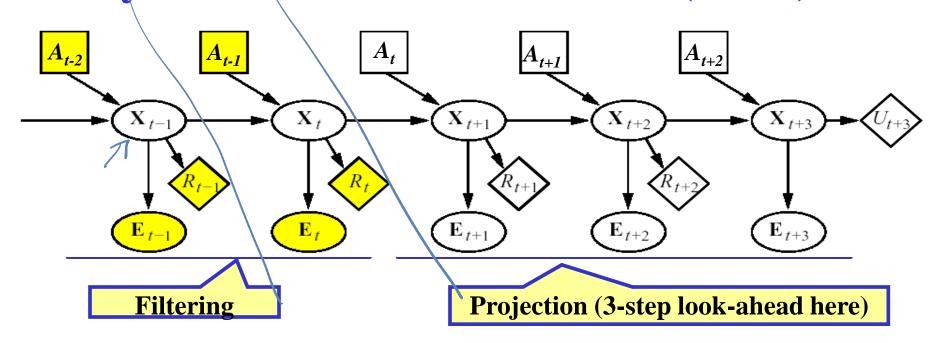
Dynamic Decision Networks (DDN)

 A filtering algorithm is used to incorporate each new percept and the action to update the belief state X_t

 Decisions are made by projecting forward possible action sequences and choosing the best one: look ahead



Dynamic Decision Networks (DDN)



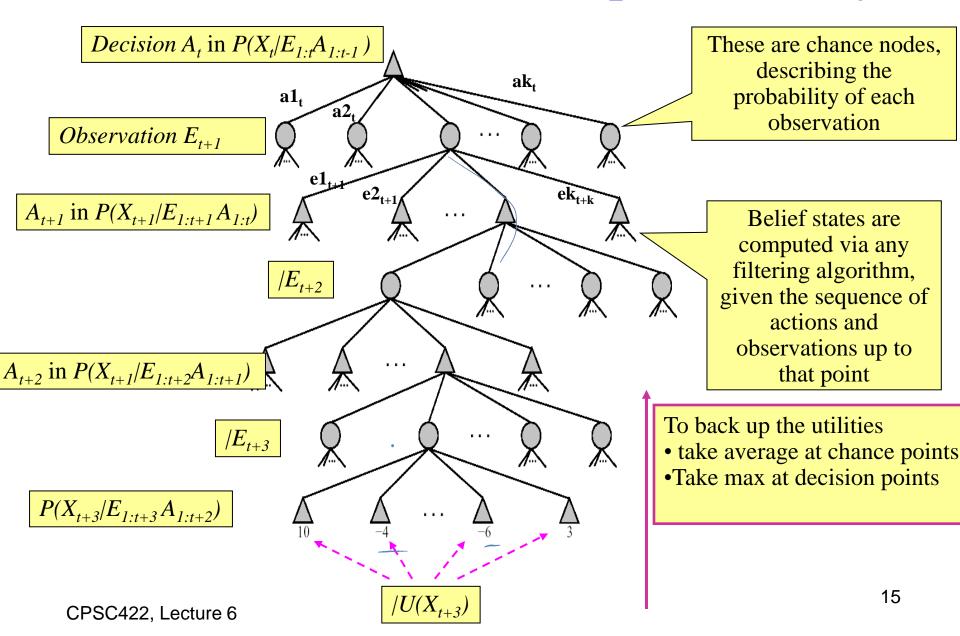
- ➤ Nodes in yellow are known (evidence collected, decisions made, local rewards)
- \triangleright Agent needs to make a decision at time $t(A_t \text{ node})$
- ➤ Network unrolled into the future for 3 steps
- \triangleright Node U_{t+3} represents the utility (or expected optimal reward V^*) in state X_{t+3}
 - i.e., the reward in that state and all subsequent rewards
 - Available only in approximate form (from another approx. method)

Look Ahead Search for Optimal Policy

General Idea:

- > Expand the decision process for n steps into the future, that is
 - "Try" all actions at every decision point
 - Assume receiving all possible observations at observation points
- > Result: tree of depth 2n+1 where
 - every branch represents one of the possible sequences of n actions and n observations available to the agent, and the corresponding belief states
 - The leaf at the end of each branch corresponds to the *belief state* reachable via that sequence of actions and observations use filtering to compute it
- "Back Up" the utility values of the leaf nodes along their corresponding branches, combining it with the rewards along that path
- Pick the branch with the highest expected value

Look Ahead Search for Optimal Policy



$$X \times_{1} \times_{2}$$

$$E \in_{1} \in_{2}$$

$$A \ni_{1} \ni_{2}$$

$$C_{1} \cdot b = 0$$

$$C_{1} \cdot c =$$

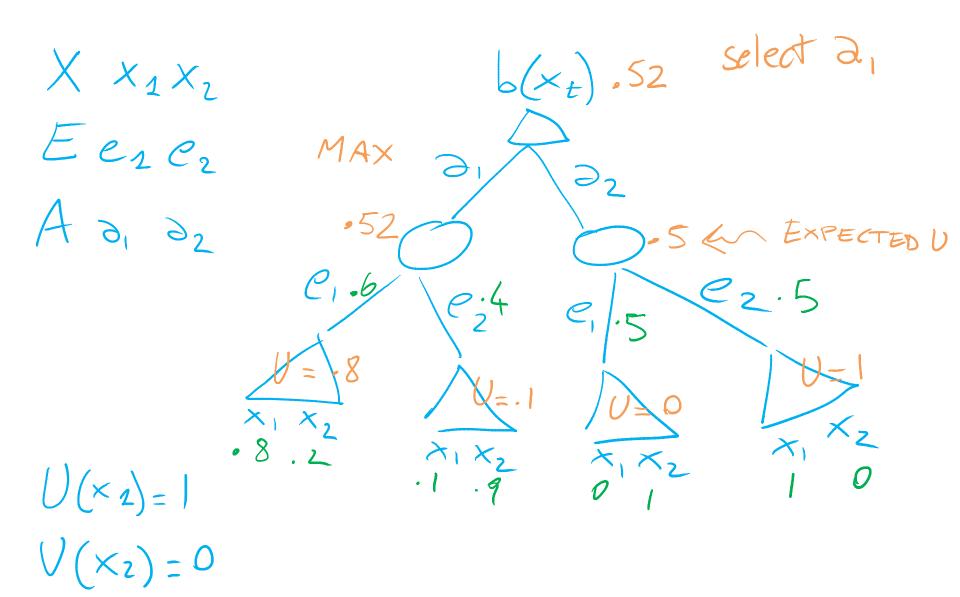
 \mathbf{A} . \mathbf{a}_1

> Best action at time t?

 \mathbf{B} . a_2

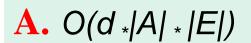
CPSC422, Lecture 6

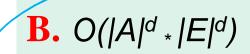
C. indifferent

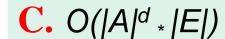


Look Ahead Search for Optimal Policy

➤ What is the time complexity for exhaustive search at depth d, with |A| available actions and |E| possible observations?







Would Look ahead work better when the discount

factor is?

A. Close to 1

B. Not too close to 1

Finding the Optimal Policy: State of the Art

- Turn a POMDP into a corresponding MDP and then apply VI: only small models
- Generalize VI to work on POMDPs
 - 10 states in 1998
 - 200,000 states in 2008-09
- Develop Approx. Methods
 - Point-Based VI and Look Ahead
 - Even 50,000,000 states http://www.cs.uwaterloo.ca/~ppoupart/software.html

Some Applications of POMDPs.....

- S Young, M Gasic, B Thomson, J Williams (2013) POMDP-based Statistical Spoken Dialogue Systems: a Review, *Proc IEEE*,
- ➤ J. D. Williams and S. Young. Partially observable Markov decision processes for spoken dialog systems. *Computer Speech & Language*, 21(2):393–422, **2007**.
- ➤ S. Thrun, et al. Probabilistic algorithms and the interactive museum tour-guide robot Minerva. *International Journal of Robotic Research*, 19(11):972–999, **2000**.
- A. N.Rafferty, E. Brunskill, Ts L. Griffiths, and Patrick Shafto. Faster teaching by POMDP planning. In *Proc. of Ai in Education*, pages 280–287, 2011
- P. Dai, Mausam, and D. S.Weld. Artificial intelligence for artificial artificial intelligence. In *Proc. of the 25th AAAI Conference on AI*,
 2011. [intelligent control of workflows]

Another "famous" Application

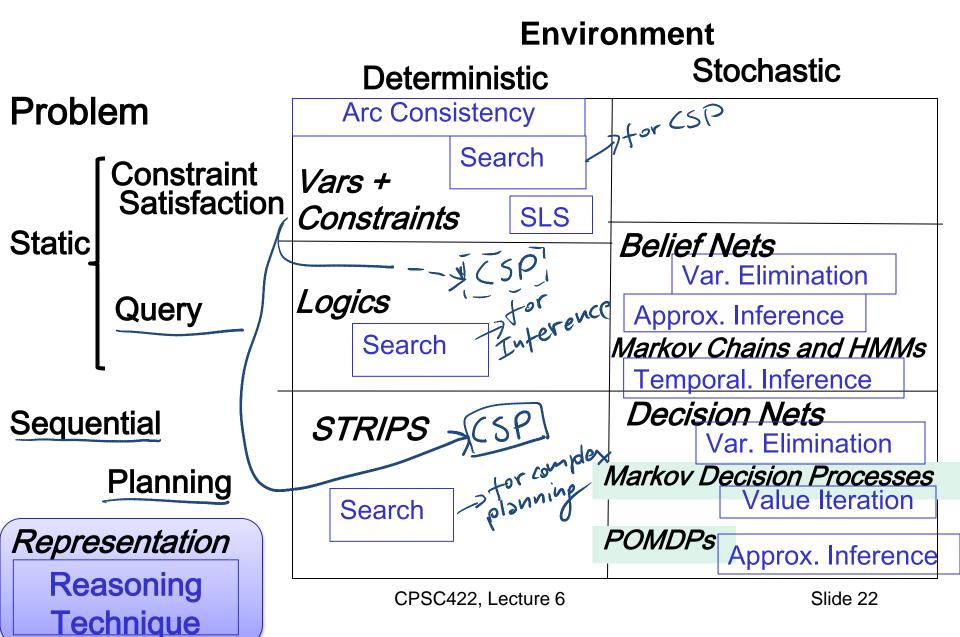
Learning and Using POMDP models of Patient-Caregiver Interactions During Activities of Daily Living

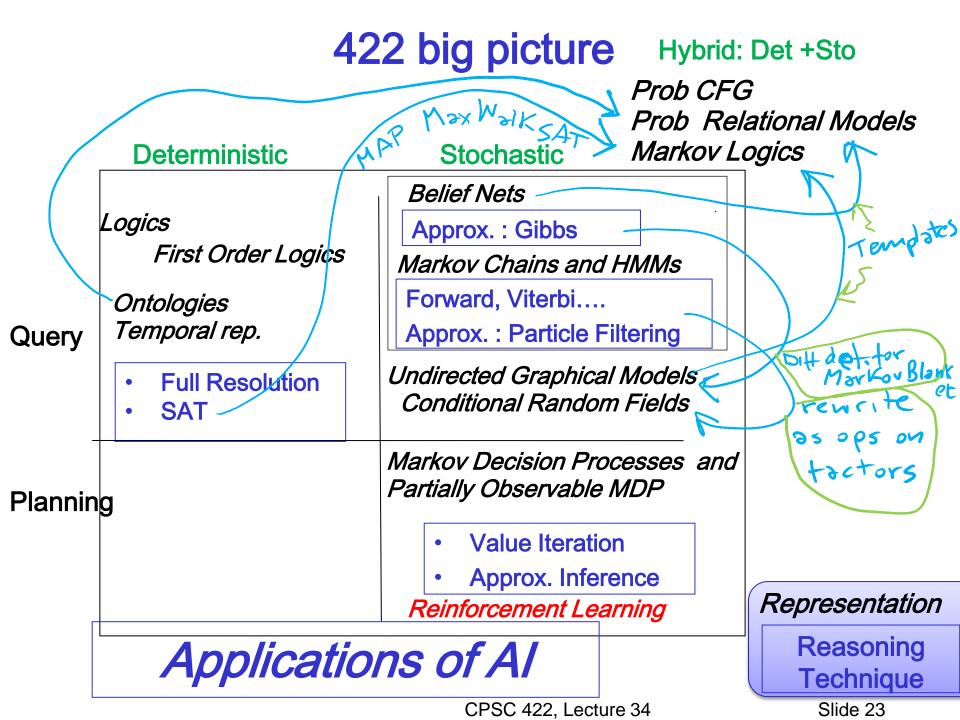
Goal: Help Older adults living with cognitive disabilities (such as Alzheimer's) when they:

- forget the proper sequence of tasks that need to be completed
- they lose track of the steps that they have already completed.

Source: Jesse Hoey UofT 2007 Slide 21

R&R systems BIG PICTURE





Learning Goals for today's class

You can:

- Define a Policy for a POMDP
- Describe space of possible methods for computing optimal policy for a given POMDP
- Define and trace Look Ahead Search for finding an (approximate) Optimal Policy
- Compute Complexity of Look Ahead Search

TODO for next Wed

- Read textbook 11.3 (Reinforcement Learning)
 - •11.3.1 Evolutionary Algorithms
 - •11.3.2 Temporal Differences
 - •11.3.3 Q-learning
 - Assignment 1 will be posted on Connect today
 - VInfo and VControl
 - MDPs (Value Iteration)
 - POMDPs

- ➤ In practice, the hardness of POMDPs arises from the complexity of policy spaces and the potentially large number of states.
- Nervertheless, real-world POMDPs tend to exhibit a significant amount of structure, which can often be exploited to improve the scalability of solution algorithms.
 - Many POMDPs have simple policies of high quality. Hence, it is often possible to quickly find those policies by restricting the search to some class of compactly representable policies.
 - When states correspond to the joint instantiation of some random variables (features), it is often possible to exploit various forms of probabilistic independence (e.g., conditional independence and context-specic independence), decomposability (e.g., additive separability) and sparsity in the POMDP dynamics to mitigate the impact of large state spaces.

Symbolic Perseus

- Symbolic Perseus point-based value iteration algorithm that uses Algebraic Decision Diagrams (ADDs) as the underlying data structure to tackle large factored POMDPs
- Flat methods: 10 states at 1998, 200,000 states at 2008
- Factored methods: 50,000,000 states
- http://www.cs.uwaterloo.ca/~ppoupart/software.html

POMDP as MPD

> By applying simple rules of probability we can derive a:

Transition model P(b'|a,b)

$$P(b'|a,b) = \sum_{e} P(b'|e,a,b) \sum_{s'} P(e|s') \sum_{s} P(s'|s,a)b(s)$$
where $P(b'|e,a,b) = 1$ if $b' = Forward(e,a,b)$

$$= 0$$
 otherwise

When the agent performs a given action a in belief state b, and then receives observation e, filtering gives a unique new probability distribution over state

deterministic transition from one belief state to the next

➤ We can also define a *reward function* for belief states

$$\rho(b) = \sum_{s} b(s)R(s)$$
CPSC422. Lecture 6

Solving POMDP as MPD

- > So we have defined a POMD as an MDP over the belief states
 - Why bother?
- Because it can be shown that an optimal policy $\pi^*(b)$ for this MDP is also an optimal policy for the original POMDP
 - i.e., solving a POMDP in its physical space is equivalent to solving the corresponding MDP in the belief state
- > Great, we are done!

POMDP as MDP

- \triangleright But how does one find the optimal policy $\pi^*(b)$?
 - One way is to restate the POMDP as an MPD in belief state space
- > State space :
 - space of probability distributions over original states
 - For our grid world the belief state space is?
 - initial distribution <1/9,1/9, 1/9,1/9,1/9,1/9,1/9,1/9,0,0> is a point in this space

What does the transition model need to specify?

?

Does not work in practice

- Although a transition model can be effectively computed from the POMDP specification
- Finding (approximate) policies for continuous, multidimensional MDPs is PSPACE-hard
 - Problems with a few dozen states are often unfeasible
- Alternative approaches....

How to Find an Optimal Policy?

- ➤ Turn a POMDP into a corresponding MDP and then solve the MDP (☺)
- ➤ Generalize VI to work on POMDPs (also ⊗)
- ➤ Develop Approx. Methods (②)
 - > Point-Based Value Iteration
 - Look Ahead

Recent Method: Pointbased Value Iteration

- Find a solution for a sub-set of all states
- Not all states are necessarily reachable
- Generalize the solution to all states
- Methods include: PERSEUS, PBVI, and HSVI and other similar approaches (FSVI, PEGASUS)

How to Find an Optimal Policy?

- Turn a POMDP into a corresponding MDP and then solve the MDP
- ➤ Generalize VI to work on POMDPs (also ⊗)
- ➤ Develop Approx. Methods (②)
 - ➤ Point-Based VI
 - Look Ahead