Department of Computer Science
 Undergraduate Events
 More details @ https://my.cs.ubc.ca/students/development/events

Co-op Info Session
Thurs., Sept 17
12:30-1:30 pm
MCLD 202
Simba Technologies Tech Talk/Info Session
Mon., Sept 21
6-7 pm
DMP 310
EA Info Session
Tues., Sept 22
6-7 pm
DMP 310

Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 4

Sep, 16, 2015

$$
\begin{aligned}
& \text { More material in this lecture this year } \\
& \text { because in Lect. } 3 \text { the projector did not } \\
& \text { work }
\end{aligned}
$$

Announcements

Assignment0 / Survey results

- Discussion on Piazza (sign up piazza. com/ubc.ca/wintereterm12015/cpsc422)
- More than 50% took 322 more than a year ago... so make sure you revise 322 material!

What to do with readings? In a few lectures we will discuss the first research paper. Instructions on what to do are available on the course webpage.

Lecture Overview

Markov Decision Processes

- Some ideas and notation
- Finding the Optimal Policy
- Value Iteration
- From Values to the Policy
- Rewards and Optimal Policy

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $\mathrm{V}^{\mathrm{n}}(\mathrm{s})$: the expected value of following policy π in state s
- $\mathrm{Q}^{\mathrm{n}}(\mathrm{s}, \mathrm{a})$, where a is an action: expected value of performing a in s, and then following policy π.
Can we express $Q^{n}(\mathrm{~s}, \mathrm{a})$ in terms of $\mathrm{V}^{\mathrm{n}}(\mathrm{s})$?

$$
Q^{\pi}(s, a)=V^{\pi}(s)+R(s)
$$

$$
Q^{n}(s, a)=R(s)+\sum_{s^{\prime} \in X} P\left(s^{\prime} \mid s, \partial\right) * V^{\pi}\left(s^{\prime}\right) \text { в. }
$$

$Q^{n}(s, a)=R(s)+\sum_{s^{\prime} \in X} V^{\pi}\left(s^{\prime}\right) \quad$.
D. None of the above

Discounted Reward Function

$>$ Suppose the agent goes through states $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$ and receives rewards $r_{1}, r_{2}, \ldots, r_{k}$
$>$ We will look at discounted reward to define the reward for this sequence, i.e. its utility for the agent
γ discount factor, $0 \leq \gamma \leq 1$
$R_{\text {max }}$ bound on $\mathrm{R}(\mathrm{s})$ for every s

$$
\begin{aligned}
& U\left[s_{1}, s_{2}, s_{3}, . .\right]=r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\ldots . \\
& =\sum_{i=0}^{\infty} \gamma^{i} r_{i+1} \leq \sum_{i=0}^{\infty} \gamma^{i} R_{\max }=\frac{R_{\max }}{1-\gamma}
\end{aligned}
$$

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $\mathrm{V}^{\mathrm{n}}(\mathrm{s})$: the expected value of following policy π in state s
- $\mathrm{Q}^{\mathrm{n}}(\mathrm{s}, \mathrm{a})$, where a is an action: expected value of performing a in s, and then following policy π.

Value of a policy and Optimal policy

We can also compute $V^{\Pi}(s)$ in terms of $Q^{\Pi}(s, a)$

For the optimal policy π * we also have

$$
V^{\pi^{*}}(s)=Q^{\pi^{*}}\left(s, \pi^{*}(s)\right)
$$

Value of Optimal policy

$$
V^{\pi^{*}}(s)=Q^{\pi^{*}}\left(s, \pi^{*}(s)\right)
$$

Remember for any policy π

$$
\left.Q^{\pi}(s, \pi(s))=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) \times V^{\pi}\left(s^{\prime}\right)\right)
$$

But the Optimal policy π^{*} is the one that gives the action that maximizes the future reward for each state
$\underbrace{}_{Q^{\pi^{*}}\left(s, \pi^{*}(s)\right.} V^{\pi^{*}}(s)=R(s)+\gamma \max _{\partial} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, 2\right) \times V^{\pi^{*}}\left(s^{\prime}\right)$
So... \Downarrow

$$
\left.V^{\pi^{*}}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \times V^{\pi^{*}}\left(s^{\prime}\right)\right)
$$

Value Iteration Rationale

> Given N states, we can write an equation like the one below for each of them

$$
\begin{aligned}
& V\left(s_{1}\right)=R\left(s_{1}\right)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s_{1}, a\right) V\left(s^{\prime}\right) \\
& V\left(s_{2}\right)=R\left(s_{2}\right)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s_{2}, a\right) V\left(s^{\prime}\right)
\end{aligned}
$$

- Each equation contains N unknowns - the V values for the N states
$>\mathrm{N}$ equations in N variables (Bellman equations): It can be shown that they have a unique solution: the values for the optimal policy
$>$ Unfortunately the N equations are non-linear, because of the max operator: Cannot be easily solved by using techniques from linear algebra
$>$ Value Iteration Algorithm: Iterative approach to find the V values and the corresponding
$>$ optimal policy

Value Iteration in Practice

$>$ Let $V^{(i)}(s)$ be the utility of state s at the $i^{\text {th }}$ iteration of the algorithm
$>$ Start with arbitrary utilities on each state $s: V^{(0)}(s)$
> Repeat simultaneously for every suntil there is "no change"

$$
V^{(\mathrm{k}+1)}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{(\mathrm{k})}\left(s^{\prime}\right)
$$

$>$ True "no change" in the values of $\mathrm{V}(\mathrm{s})$ from one iteration to the next are guaranteed only if run for infinitely long.

- In the limit, this process converges to a unique set of solutions for the Bellman equations
- They are the total expected rewards (utilities) for the optimal policy

$$
\begin{gathered}
\text { Example } \left.\begin{array}{c}
\text { sorry (column, row) } \\
\text { to indicste stote }
\end{array}\right)
\end{gathered}
$$

- Suppose, for instance, that we start with values $\mathrm{V}^{(0)}(\mathrm{s})$ that are all 0

Iteration 1

$$
V^{(1)}(1,1)=-0.04+1^{*} \max \left[\begin{array}{lc}
0.8 V^{(0)}(1,2)+0.1 V^{(0)}(2,1)+0.1 V^{(0)}(1,1) & U P \\
0.9 V^{(0)}(1,1)+0.1 V^{(0)}(1,2) & L E F T \\
0.9 V^{(0)}(1,1)+0.1 V^{(0)}(2,1) & D O W N \\
0.8 V^{(0)}(2,1)+0.1 V^{(0)}(1,2)+0.1 V^{(0)}(1,1) & R I G H T
\end{array}\right]
$$

$$
V^{(1)}(1,1)=-0.04+\max \left[\begin{array}{ll}
0 & U P \\
0 & L E F T \\
0 & D O W N \\
0 & R I G H T
\end{array}\right]
$$

Example (cont'd) (sorry (colvmn, row), Example (cont'd) toindicste stote)

Let's compute $\mathrm{V}^{(1)}(3,3)$

Iteration 0

3

2 | 0 | 0 | 0 | +1 |
| :---: | :---: | :---: | :---: |
| 0 | | 0 | -1 |
| 0 | 0 | 0 | 0 |
| 1 | 2 | 3 | 4 |

Iteration 1

$$
V^{(1)}(3,3)=-0.04+1 * \max \left[\begin{array}{lc}
0.8 V^{(0)}(3,3)+0.1 V^{(0)}(2,3)+0.1 V^{(0)}(4,3) & U P \\
0.8 V^{(0)}(2,3)+0.1 V^{(0)}(3,3)+0.1 V^{(0)}(3,2) & L E F T \\
0.8 V^{(0)}(3,2)+0.1 V^{(0)}(2,3)+0.1 V^{(0)}(4,3) & D O W N \\
0.8 V^{(0)}(4,3)+0.1 V^{(0)}(3,3)+0.1 V^{(0)}(3,2) & R I G H T
\end{array}\right]
$$

$$
V^{(1)}(3,3)=-0.04+\max \left[\begin{array}{ll}
0.1 & U P \\
0 & L E F T \\
0.1 & D O W N \\
0.8 & R I G H T
\end{array}\right]
$$

Example (cont'd)

$>$ Let's compute $\mathrm{V}^{(1)}(4,1)$

(sorry, (column, row) to indicste state)

Iteration 0

Iteration 1

$$
V^{(1)}(4,1)=-0.04+\max \left[\begin{array}{lc}
0.8 V^{(0)}(4,2)+0.1 V^{(0)}(3,1)+0.1 V^{(0)}(4,1) & U P \\
0.8 V^{(0)}(3,1)+0.1 V^{(0)}(4,2)+0.1 V^{(0)}(4,1) & L E F T \\
0.9 V^{(0)}(4,1)+0.1 V^{(0)}(3,2) & D O W N \\
0.9 V^{(0)}(4,1)+0.1 V^{(0)}(4,2) & R I G H T
\end{array}\right]
$$

$$
V^{(1)}(4,1)=-0.04+\max \left[\begin{array}{lc}
-0.8 & U P \\
-0.1 & L E F T \\
0 & D O W N \\
-0.1 & R I G H T
\end{array}\right]
$$

After a Full Iteration

Iteration 1

3	-. 04	-. 04	0.76	+1
2	-. 04		-. 04	-1
1	-. 04	-. 04	-. 04	-. 04
	1	2	3	4

> Only the state one step away from a positive reward $(3,3)$ has gained value, all the others are losing value

Some steps in the second iteration

Iteration 2

20	-.04	-.04	0.76	+1
20	-.04		-.04	-1
	-.04	-.04	-.04	-.04
1				

3	-. 04	-. 04	0.76	+1
2	-. 04		-. 04	-1
1	-0.08	-. 04	-. 04	-. 04
	1	2	3	4

$$
V^{(2)}(1,1)=-0.04+1^{*} \max \left[\begin{array}{lc}
0.8 V^{(1)}(1,2)+0.1 V^{(1)}(2,1)+0.1 V^{(1)}(1,1) & U P \\
0.9 V^{(1)}(1,1)+0.1 V^{(1)}(1,2) & L E F T \\
0.9 V^{(1)}(1,1)+0.1 V^{(1)}(2,1) & D O W N \\
0.8 V^{(1)}(2,1)+0.1 V^{(1)}(1,2)+0.1 V^{(1)}(1,1) & R I G H T
\end{array}\right]
$$

Example (cont'd)

> Let's compute $\mathrm{V}^{(1)}(2,3)$

Iteration 2

-.04	0.56	0.76	+1
-.04		-.04	-1
-0.08	-.04	-.04	-.04
$\mathbf{1}$	2	3	4

$$
V^{(1)}(2,3)=-0.04+1 * \max \left[\begin{array}{ll}
0.8 V^{(0)}(2,3)+0.1 V^{(0)}(1,3)+0.1 V^{(0)}(3,3) & U P \\
0.8 V^{(0)}(1,3)+0.1 V^{(0)}(2,3)+0.1 V^{(0)}(2,3) & L E F T \\
0.8 V^{(0)}(2,3)+0.1 V^{(0)}(1,3)+0.1 V^{(0)}(3,3) & D O W N \\
0.8 V^{(0)}(3,3)+0.1 V^{(0)}(2,3)+0.1 V^{(0)}(2,3) & R I G H T
\end{array}\right]
$$

$$
V^{(1)}(2,3)=-0.04+(0.8 * 0.76+0.2 *-0.04)=0.56
$$

> Steps two moves away from positive rewards start increasing their value

State Utilities as Function of Iteration \#

 (anlyfor 5 states)

		$(3,3)$	$(4,3)$
			$(4,2)$
$(1,1)$		$(3,1)$	$(4,1)$

Number of iterations
$>$ Note that values of states at different distances from $(4,3)$ accumulate negative rewards until a path to $(4,3)$ is found

Value Iteration: Computational

 Complexity
iclicker.

Value iteration works by producing successive approximations of the optimal value function.

$$
\forall s: V^{(\mathrm{k}+1)}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{(\mathrm{k})}\left(s^{\prime}\right)
$$

What is the complexity of each iteration?

$$
\text { A. } \left.\mathrm{O}\left(|\mathrm{~A}|^{2}|\mathrm{~S}|\right) \quad \text { B. } \mathrm{O}\left(|\mathrm{~A}||\mathrm{S}|^{2}\right)\right) \quad \text { C. } \mathrm{O}\left(|\mathrm{~A}|^{2}|\mathrm{~S}|^{2}\right)
$$

...or faster if there is sparsity in the transition function.
small sets

Relevance to state of the art MDPs

FROM : Planning with Markov Decision
Processes: An AI Perspective Mausam
(UW), Andrey Kolobov (MSResearch)
Synthesis Lectures on Artificial Intelligence and Machine Learning Jun 2012

Free online through UBC

" Value Iteration (VI) forms the basis of most of the advanced MDP algorithms that we discuss in the rest of the book."

Lecture Overview

Markov Decision Processes

- Finding the Optimal Policy
- Value Iteration
- From Values to the Policy
- Rewards and Optimal Policy

Value Iteration: from state values V to $\boldsymbol{\pi}^{*}$

> Now the agent can chose the action that implements the MEU principle: maximize the expected utility of the subsequent state

Value Iteration: from state values V to $\boldsymbol{\pi}^{*}$

$>$ Now the agent can chose the action that implements the MEU principle: maximize the expected utility of the subsequent state

Example: from state values V to ת*

$$
\pi^{*}(S)=\arg \max \sum_{a} P\left(S^{\prime} \mid S, A\right) V^{\pi^{\prime}}\left(S^{\prime}\right)^{2} \begin{array}{l|l|l|l|l|}
\hline-1 \\
\hline
\end{array}
$$

$>$ To find the best action in $(1,1)$

Optimal policy

> This is the policy that we obtain....

Learning Goals for today's class

You can:

Define/read/write/trace/debug the Value Iteration (VI) algorithm. Compute its complexity.

- Compute the Optimal Policy given the output of VI - Explain influence of rewards on optimal policy

TODO for Fri

- Read Textbook 9.5.6 Partially Observable MDPs
-Also Do Practice Ex. 9.C http://www.aispace.org/exercises.shtml

