Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 34

Dec, 2, 2015

Slide source: from David Page (MIT) (which were from From Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer) and from Lise Getoor

CPSC 422, Lecture 33

Lecture Overview

- Recap Motivation and Representation for Probabilistic Relational Models (PRMs)
 - Full Relational Schema and its Instances
 - Relational Skeleton and its Completion Instances
- Probabilistic Model of PRMs
 - Dependency Structure
 - Parameters

How PRMs extend BNs?

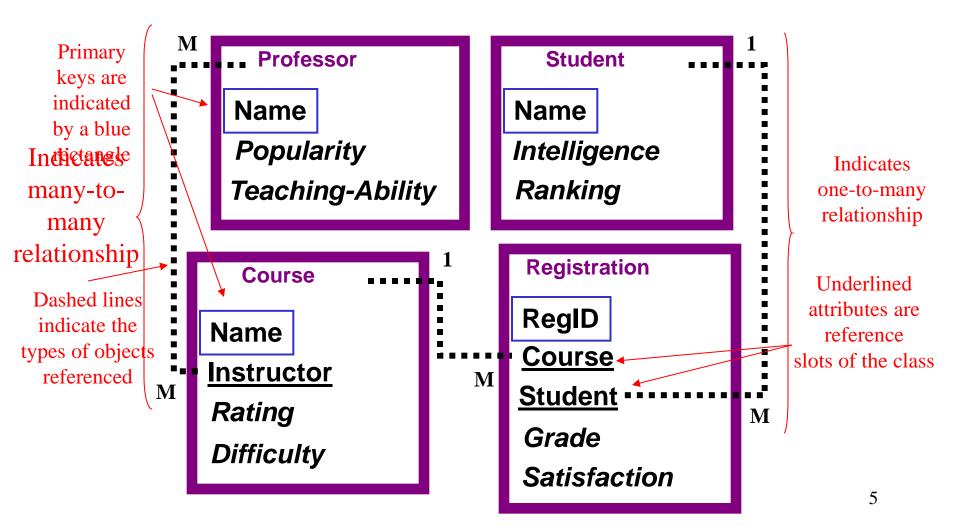
1. PRMs conceptually extend BNs to allow the specification of a probability model for *classes* of objects rather than a fixed set of simple attributes

2. PRMs also allow properties of an entity to depend probabilistically on properties of other *related entities*

Mapping PRMs from Relational Models

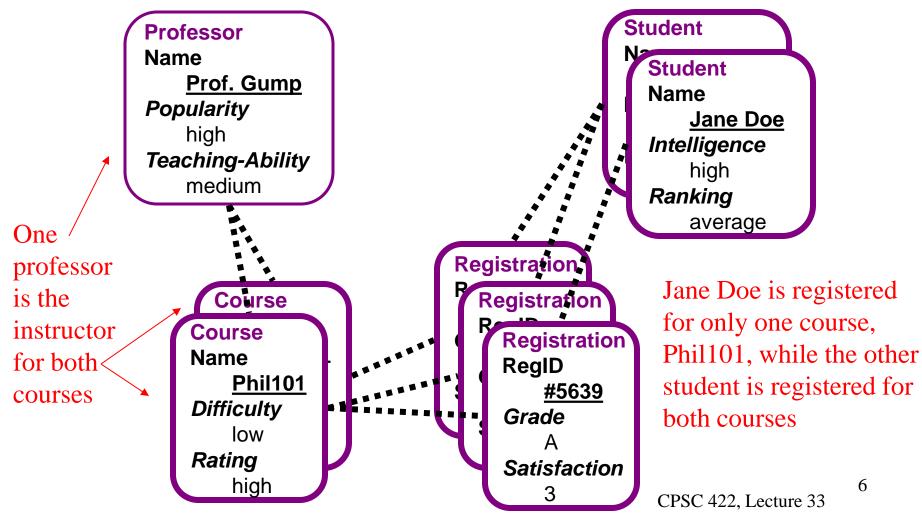
- The representation of PRMs is a direct mapping from that of relational databases
- A relational model consists of a set of classes X₁,...,X_n and a set of relations R₁,...,R_m, where each relation R_i is typed

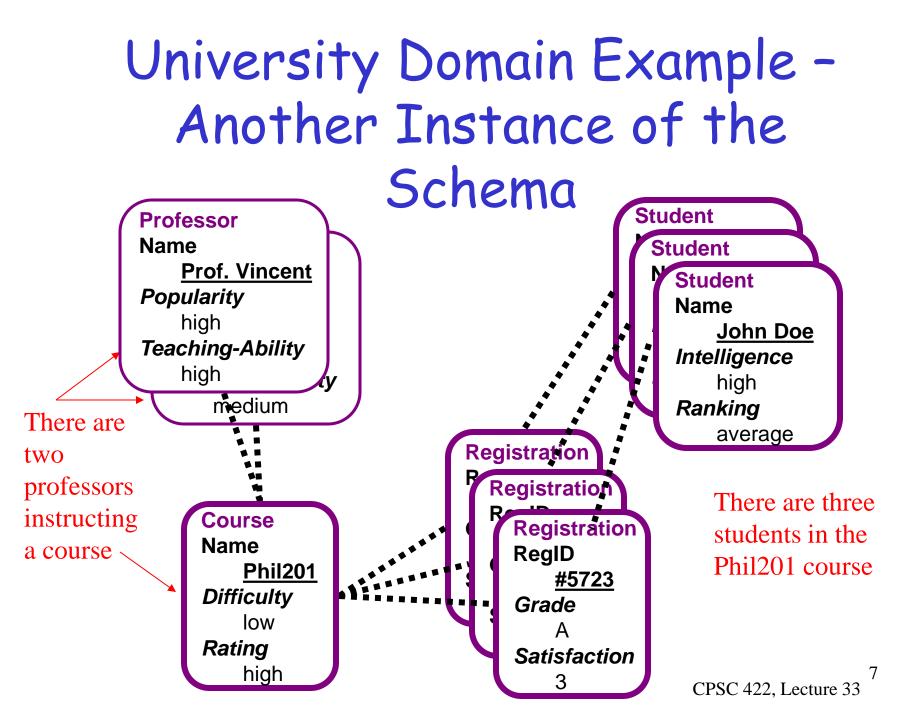
University Domain Example -Full Relational Schema



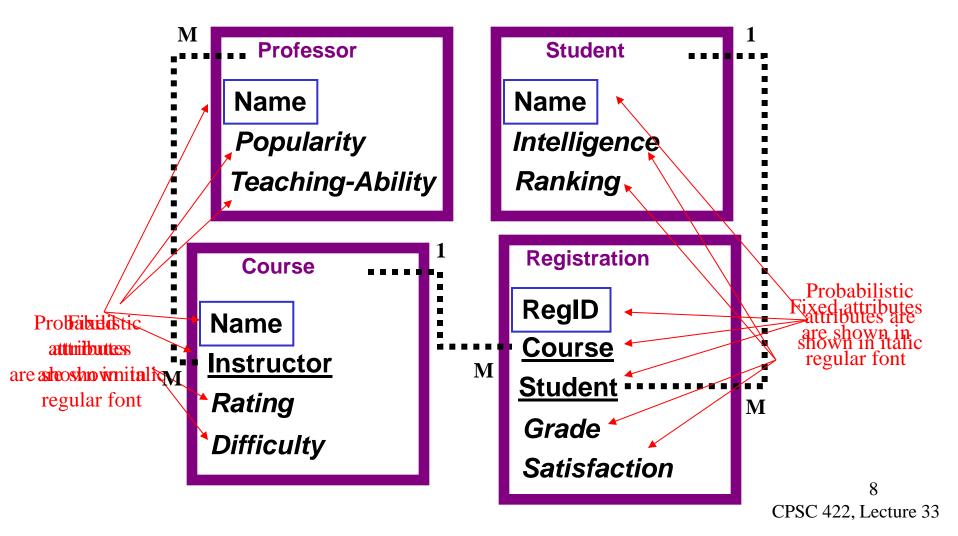
CPSC 422, Lecture 33

University Domain Example - An Instance of the Schema





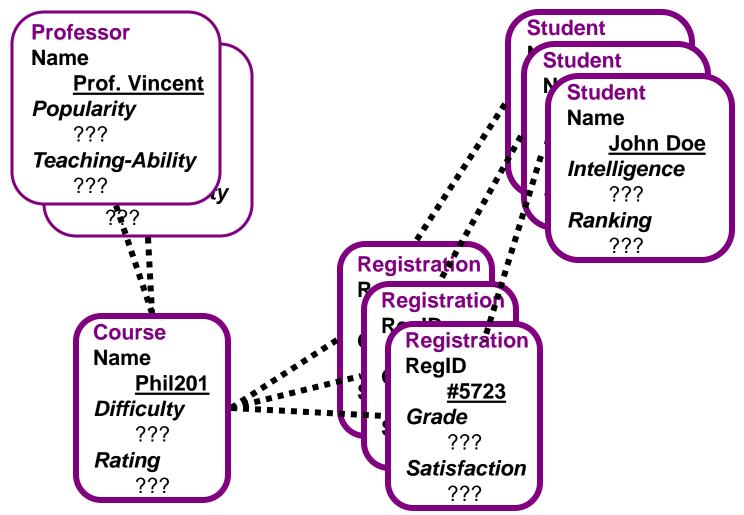
University Domain Example - fixed vs. probabilistic attributes



PRM Semantics: Skeleton Structure

- A skeleton structure o of a relational schema is a partial specification of an instance of the schema. It specifies
 - set of objects for each class,
 - values of the fixed attributes of these objects,
 - relations that hold between the objects
- The values of probabilistic attributes are left unspecified
- A completion I of the skeleton structure σ extends the skeleton by also specifying the values of the probabilistic attributes

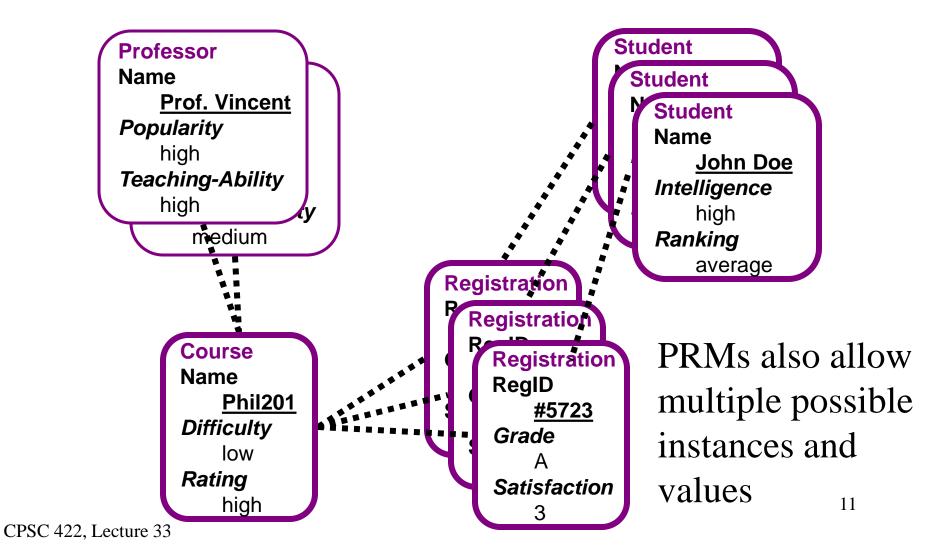
University Domain Example -Relational Skeleton



10

CPSC 422, Lecture 33

University Domain Example -The Completion Instance I



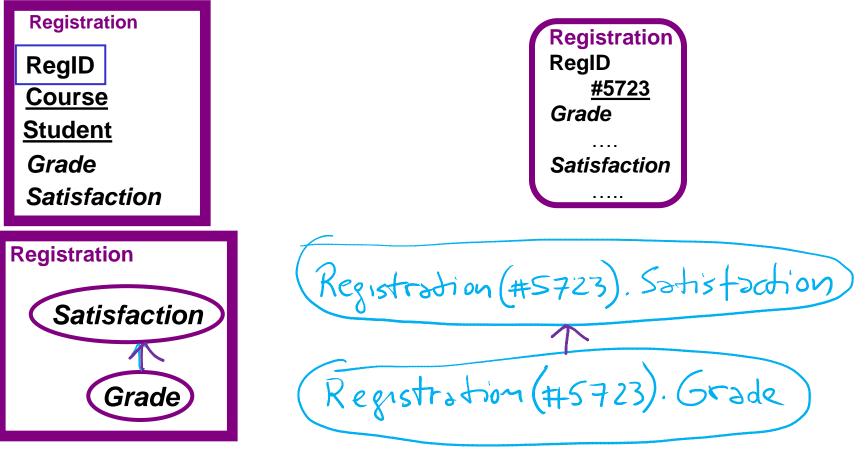
Lecture Overview

- Recap Motivation and Representation for Probabilistic Relational Models (PRMs)
 - Full Relational Schema and its Instances
 - Relational Skeleton and its Completion Instances
- Probabilistic Model of PRMs
 - Dependency Structure
 - Parameters

PRMs: Probabilistic Model

- The probabilistic model consists of two components:
 - the qualitative dependency structure, S
 - the parameters associated with it, Θ_s
- The dependency structure is defined by associating with each attribute X.A a set of parents Pa(X.A); parents are attributes that are "direct influences" on X.A. This dependency holds for any object of class X

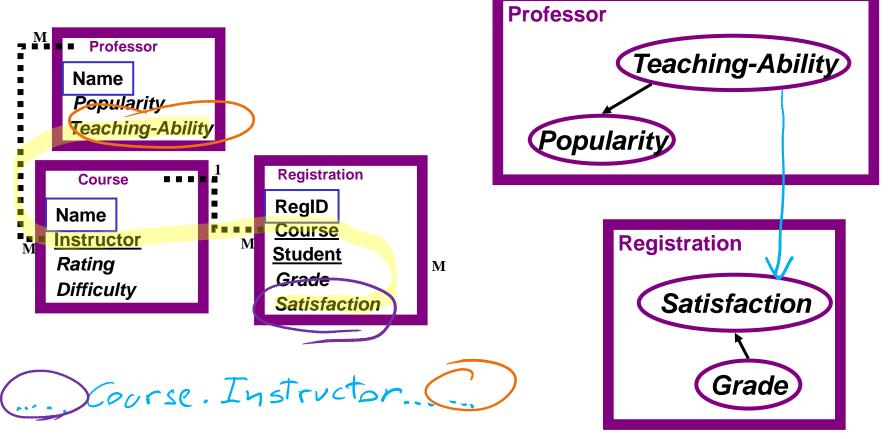
Dependencies within a class The prob. attribute X.A can depend on another probabilistic attribute B of X. This induces a corresponding dependency for individual objects



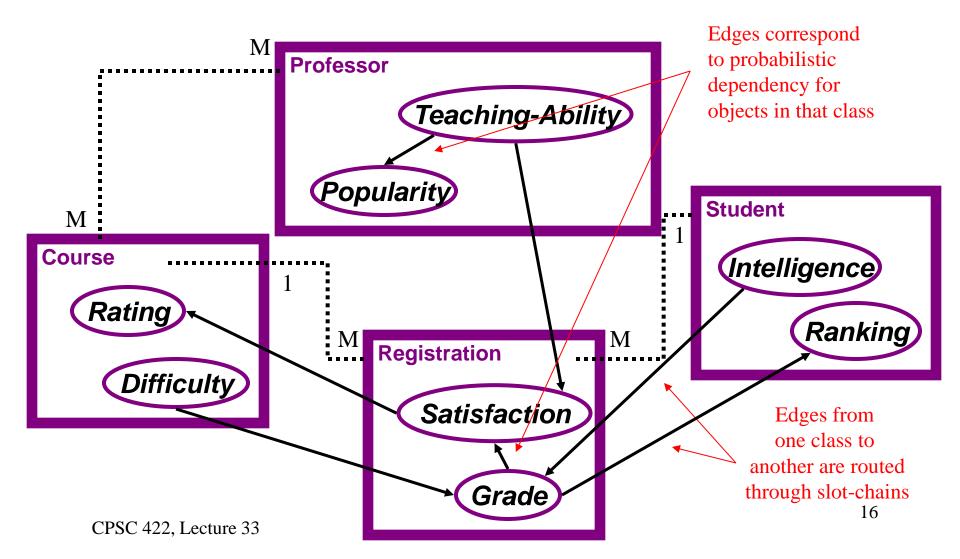
CPSC 422, Lecture 33

Dependencies across classes

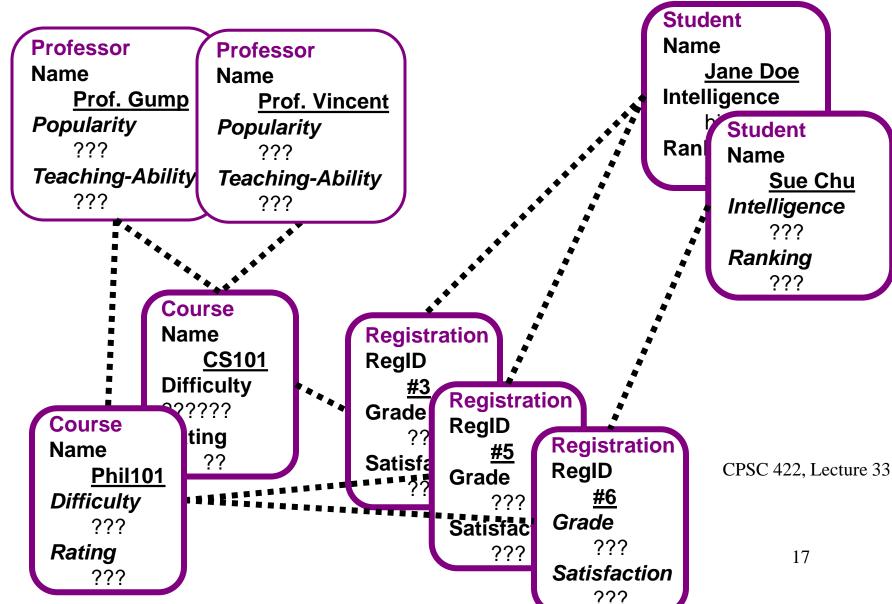
 The attribute X.A can also depend on attributes of related objects X.τ.B, where τ is a slot chain

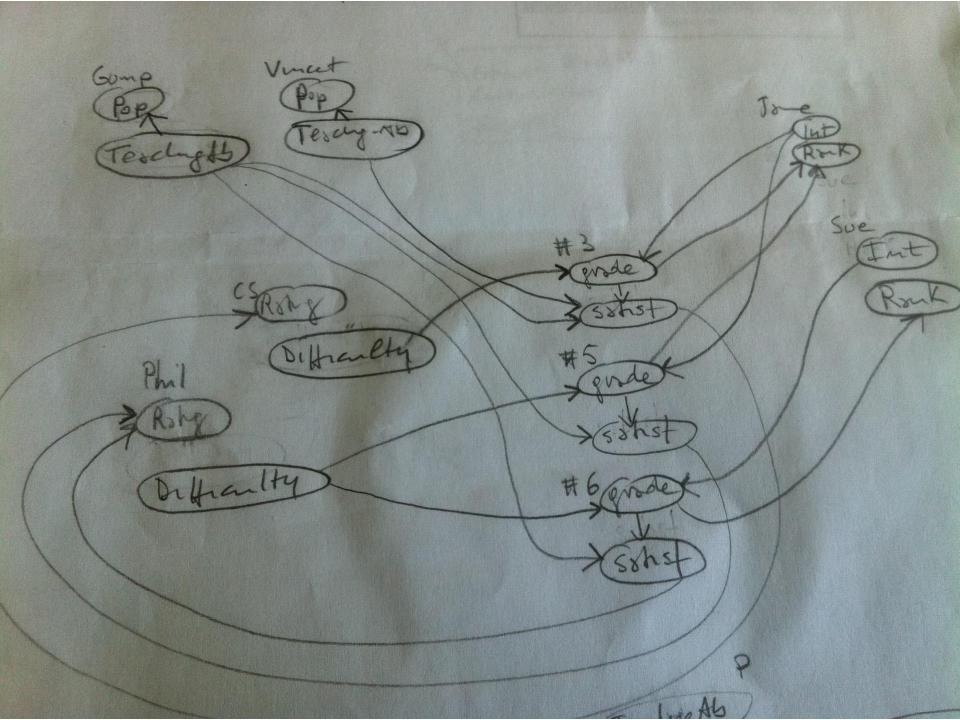


Possible PRM Dependency Structure for the University Domain



Let's derive the Corresponding "grounded" Dependency Structure for this Skeleton

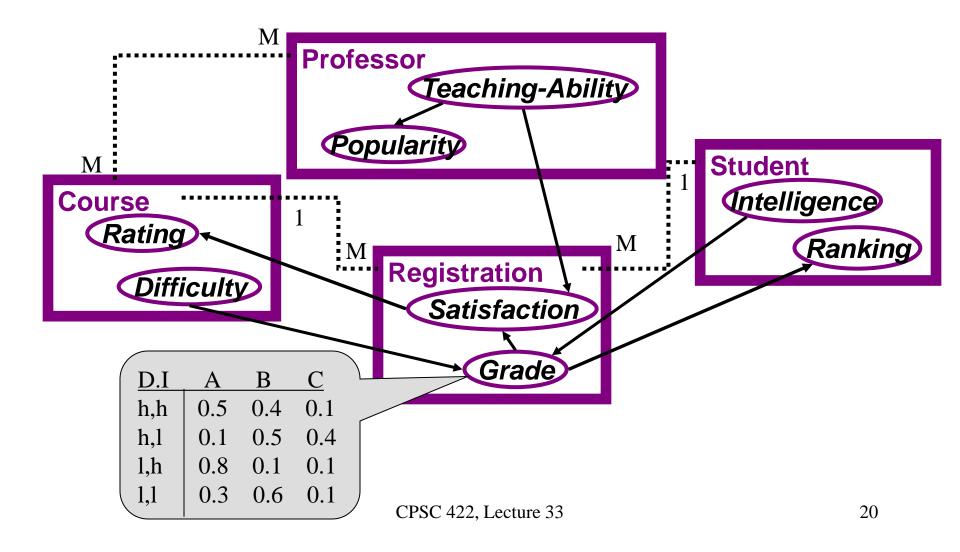




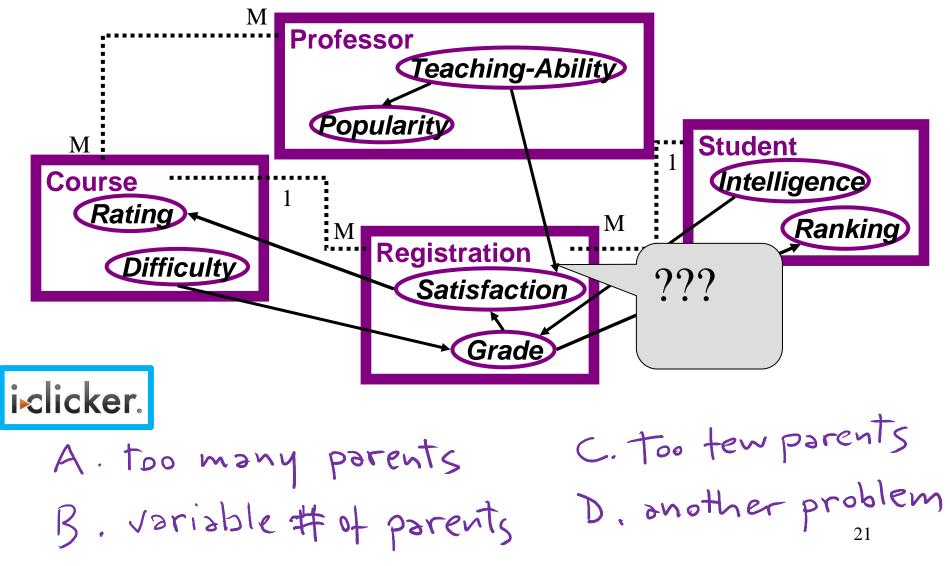
Parameters of PRMs

- A PRM contains a conditional probability distribution (CPD) P(X.A|Pa(X.A)) for each attribute X.A of each class
- More precisely, let U be the set of parents of X.A. For each tuple of values $u \in V(U)$, the CPD specifies a distribution P(X.A|u) over V(X.A). The parameters in all of these CPDs comprise Θ_s

Now, what are the parameters Θ_{S}

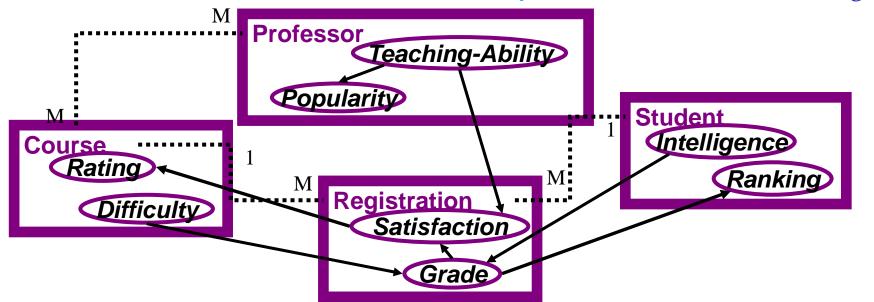


Problem with some parameters Θ_{s}



CPSC 422, Lecture 33

Problem with some parameters Θ_{S}



When the slot chain τ (e.g. Course Instructor) is not guaranteed to be single-valued, we must specify the probabilistic dependence of

- · X.A Registration. Satisfaction
- on the set {y. B y ∈ k. 7} The Teaching-Ability of all the profs

CPSC 422, Lecture 33

instructors

who are

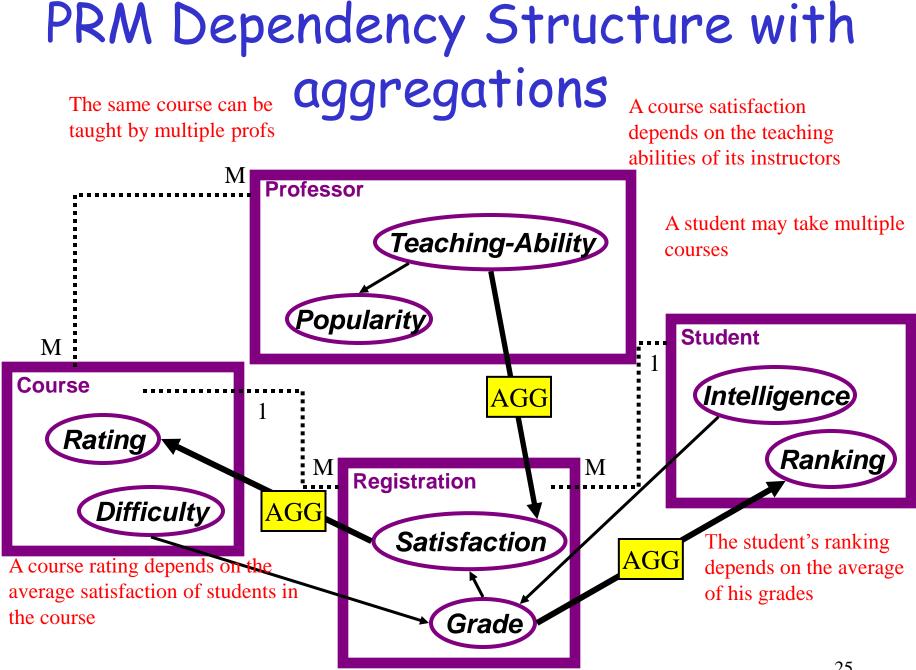
How to specify cond. Prob. When # of parents can vary?

 The notion of aggregation from database theory gives us the tool to address this issue; i.e., x.a will depend probabilistically on some aggregate property of this set

Aggregation in PRMs

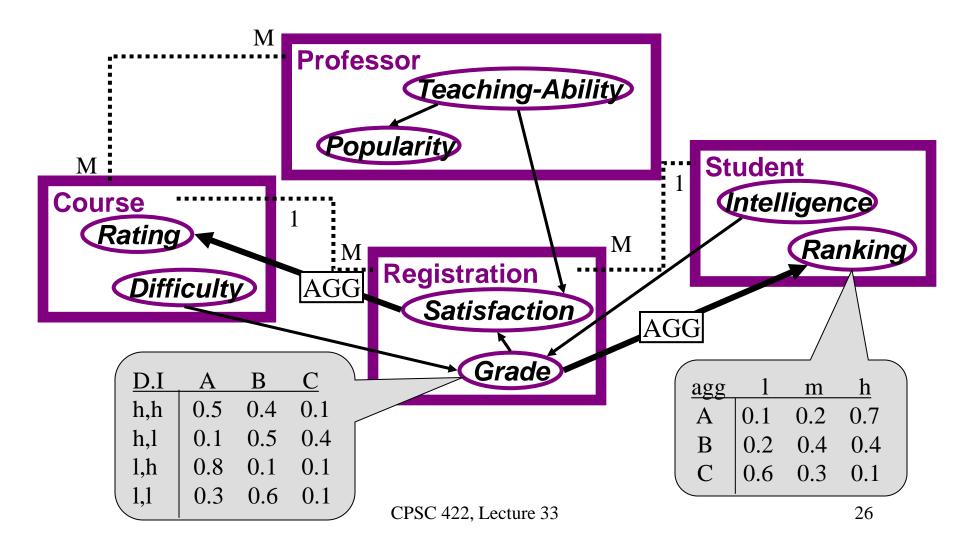
Examples of aggregation are:

- the mode of the set (most frequently occurring value);
- mean value of the set (if values are numerical);
- median, maximum, or minimum (if values are ordered);
- cardinality of the set; etc.



CPSC 422, Lecture 33

CPDs in PRMs



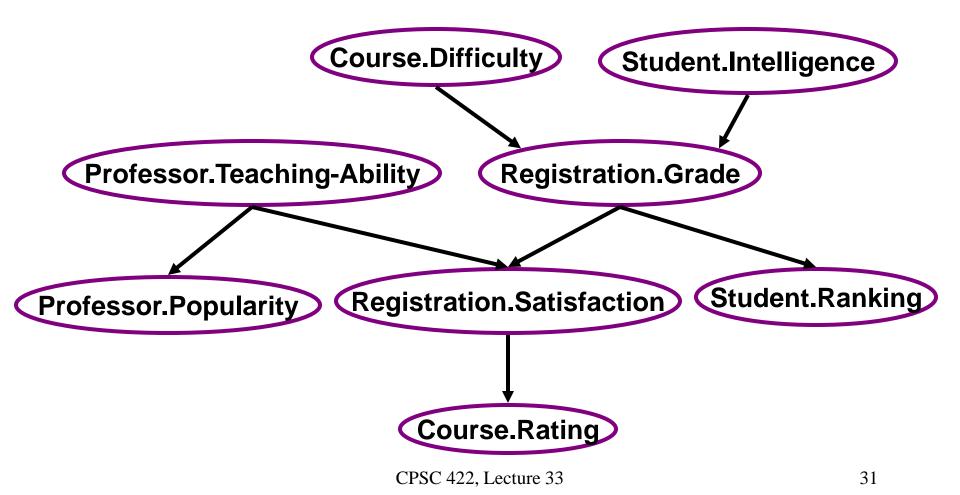
JPD in PRMs

- Given a skeleton structure σ for our schema, we can apply these local conditional probabilities to define a JPD (joint probability distribution) over all completions of the skeleton
- Note that the objects and relations between objects in a skeleton are always specified by σ, hence we are disallowing uncertainty over the relational structure of the model

Parameter Sharing / CPTs reuse, where else?

- Temporal Models
- Because of the stationary assumption!

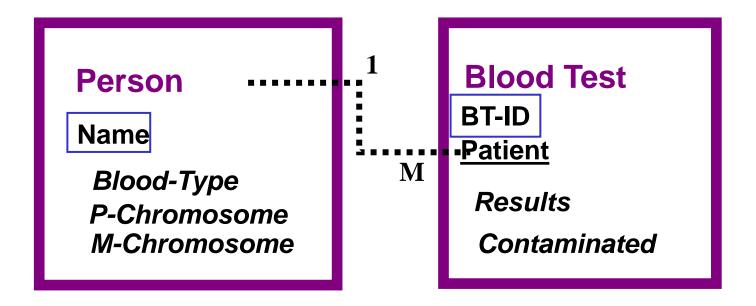
- To define a coherent probabilistic model, we must ensure that our probabilistic dependencies are....
- Acyclic!

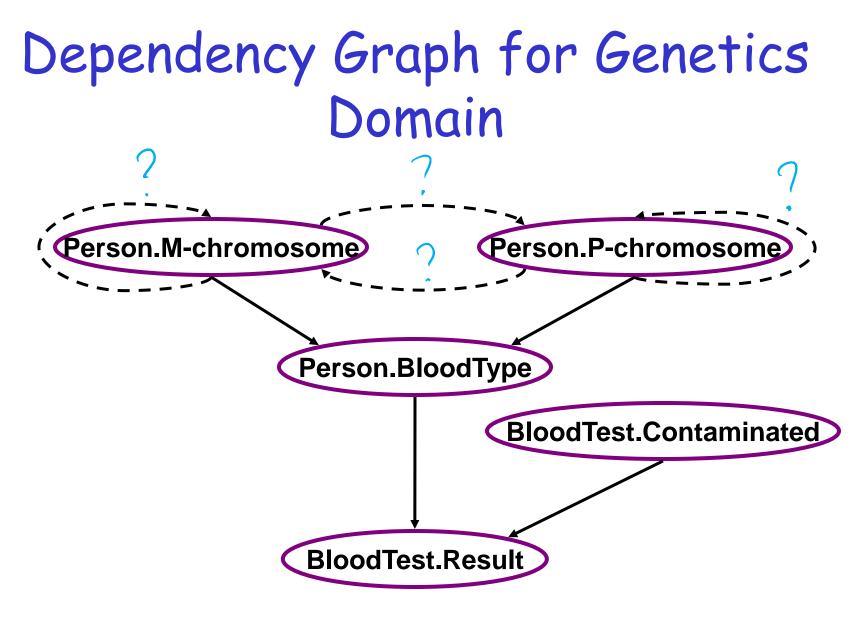


Ensuring Acyclic Dependencies

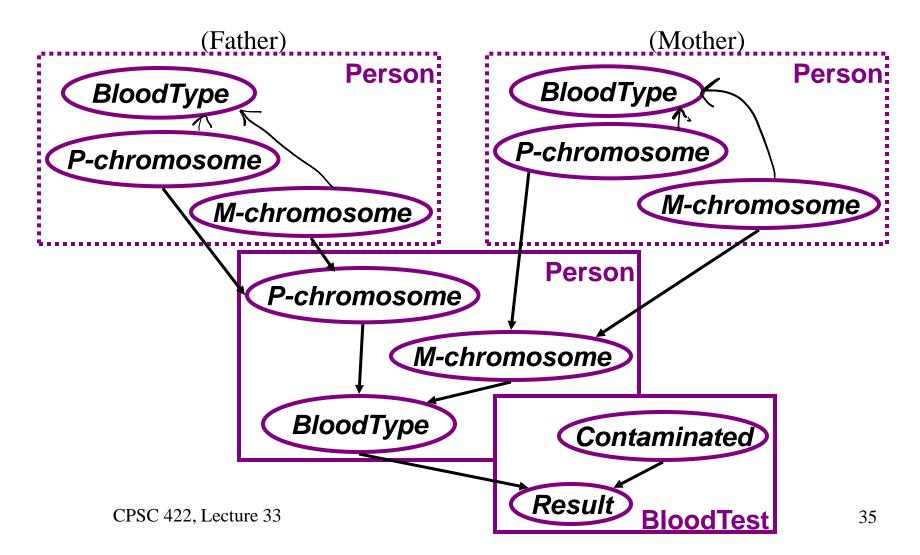
- In general, however, a cycle in the class dependency graph does not imply that all skeletons induce cyclic dependencies
- A model may appear to be cyclic at the class level, however, this cyclicity is always resolved at the level of individual objects
- The ability to guarantee that the cyclicity is resolved relies on some prior knowledge about the domain. The user can specify that certain slots are guaranteed acyclic

Relational Schema for the Genetics Domain

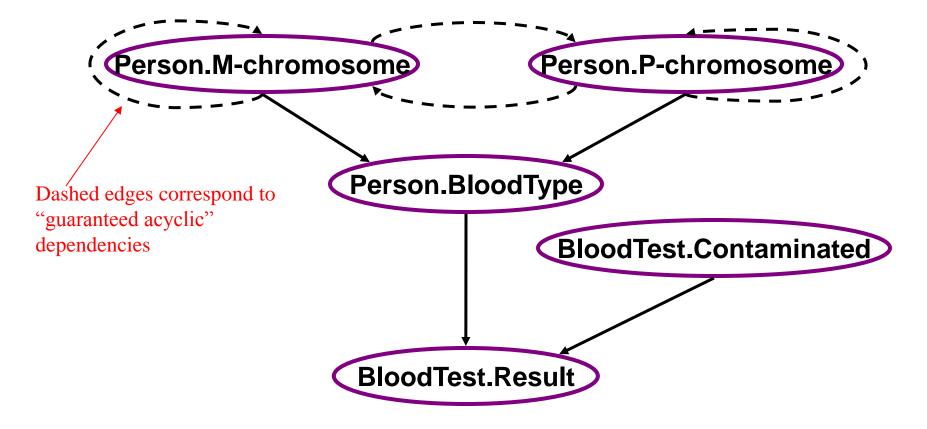




PRM for the Genetics Domain



Dependency Graph for Genetics Domain



Learning Goals for today's class

You can:

- Build the grounded Bnet, given a Relational Skeleton, a dependency structure, and the corresponding parameters
- Define and apply guaranteed acyclicity

422	22 big picture: Where are StarAl (stat			l (statistic	al relational AI)
	big picture. wi		Hybrid: Det +Sto		
we?		Prob CFG			
					lational Models
	Deterministic	Stochastic Markov L		ogics	
Query		Belief Nets			
	Logics	Approx. : Gi	ibbs	· ·	
	First Order Logics	Markov Chains and HMMs			
	Ontologies	Forward, Viterbi			
	Chiclegice	Approx. : Particle Filtering			
	Full ResolutionSAT	Undirected Graphical Models Markov Networks Conditional Random Fields Markov Decision Processes and Partially Observable MDP			
	g				/
		Value IterationApprox. Inference			
Г		Reinforcement Learning			Representation
	Applicatio	ons of Al	1		Reasoning Technique

Last class on Fri

- Beyond 322/422 (ML + grad courses)
- Watson....
- Final Exam

Fill out on-line Teaching Evaluation