Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 32

Nov, 27, 2015

Slide source: from Pedro Domingos UW \& Markov Logic: An Interface Layer for Artificial Intelligence Pedro Domingos and Daniel Lowd University of Washington, Seattle

Lecture Overview

- Finish Inference in MLN
- Probability of a formula, Conditional Probability
- Markov Logic: applications
- Entity resolution
- Statistical Parsing! (not required, just for fun
;-)

Markov Logic: Definition

- A Markov Logic Network (MLN) is
- a set of pairs (F, w) where
- F is a formula in first-order logic
- w is a real number
- Together with a set C of constants,
- It defines a Markov network with

Grounding:
substituting vars with constants

- One binary node for each grounding of each predicate in the MLN
- One feature/factor for each grounding of each formula F in the MLN, with the corresponding weight w

MLN features

```
1.5 \forallx Smokes (x) => Cancer ( }x\mathrm{ )
1.1 \forallx,y Friends (x,y)=>(Smokes }(x)\Leftrightarrow\operatorname{Smokes}(y)
```

Two constants: Anna (A) and Bob (B)

Computing Probabilities

$\mathrm{P}\left(\right.$ Formula, $\left.\mathrm{M}_{\mathrm{L}, \mathrm{C}}\right)=$?

- Brute force: Sum probs. of possible worlds where formula holds

$$
\begin{aligned}
& M_{L, C} \text { Markov Loge Network } \\
& P W_{F} \text { possible worlds in which } F_{\text {is true }} \\
& P\left(F, M_{L, C}\right)=\sum_{p w \in W_{F}} P\left(p w, M_{L, C}\right)
\end{aligned}
$$

- MCMC: Sample worlds, check formula holds
S all samples
S_{F} samples (ie. possible worlds) in which Fistrue
$P\left(F, M_{L, C}\right)=\frac{\left|S_{F}\right|}{|S|}$

Computing Cond. Probabilities

$1.5 \quad \forall x \operatorname{Smokes}(x) \Rightarrow$ Cancer (x)
$1.1 \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Let's look at the simplest case
P (ground literal | conjuction of ground literals, $\mathrm{M}_{\mathrm{L}, \mathrm{C}}$) P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

irclicker.

To answer this query do you need to create (ground) the whole network?

Computing Cond. Probabilities

Let's look at the simplest case
P (ground literal | conjuction of ground literals, $\mathrm{M}_{\mathrm{L}, \mathrm{C}}$)
P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

You do not need to create (ground) the part of the Markov Network from which the query is independent given the evidence

Computing Cond. Probabilities

 P(Cancer(B)| Smokes(A), Friends(A, B), Friends (B, A))The sub network is determined by the formulas (the logical structure of the problem)

1.5	$\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
1.1	$\forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

You can then perform Gibbs Sampling in this Sub Network

Lecture Overview

- Finish Inference in MLN
- Probability of a formula, Conditional Probability
- Markov Logic: applications
- Entity resolution
- Statistical Parsing!

Entity Resolution

- Determining which observations correspond to the same real-world objects
- (e.g., database records, noun phrases, video regions, etc)
- Crucial importance in many areas
(e.g., data cleaning, NLP, Vision)

Entity Resolution: Example

AUTHOR: H. POON \& P. DOMINGOS

 TITLE: UNSUPERVISED SEMANTIC PARSING VENUE: EMNLP-09AUTHOR: Hoifung Poon and Pedro Domings
TITLE: Unsupervised semantic parsing
VENUE: Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing
AUTHOR: Poon, Hoifung and Domings, Pedro
TITLE: Unsupervised ontology induction from text
VENUE: Proceedings of the Forty-Eighth Annual Meeting of the
Association for Computational Linguistics
AUTHOR: H. Poon, P. Domings
TITLE: Unsupervised ontology induction
VENUE: ACL-10

Entity Resolution (relations)

Problem: Given citation database, find duplicate records Each citation has author, title, and venue fields We have 10 relations

Author (bib, author) Title (bib ,title)
provided os evidence Venue (bib, venue)

HasWord (author, word) HasWord (title, word) HasWord (venue, word)
indicate which words are present in each field;

SameAuthor (author, author) represent field equality; SameTitle(title, title) SameVenue (venue, venue)

SameBib (bib, bib) represents citation equality;

To be inferred

Entity Resolution (formulas)

Predict citation equality based on words in the fields

Title (bl, ti) ^ Title (b2, t2) ^

 HasWord(t1,+word) ^ HasWord(t2,+word) \Rightarrow SameBib (bl, b2)
(NOTE: +word is a shortcut notation, you actually have a rule for each word egg., Title (bl, ti) ^ Title (b2, th) ^ HasWord(t1,"bayesian") ^ HasWord(t2,"bayesian") \Rightarrow SameBib(b1, b2))

Same 1000s of rules for author
Same 1000s of rules for venue

Entity Resolution (formulas)

Transitive closure

SameBib (b1,b2) ^ SameBib (b2,b3) \Rightarrow SameBib (b1,b3)
SameAuthor (a1,a2) ^ SameAuthor (a2,a3) \Rightarrow SameAuthor (a1,a3)
Same rule for title
Same rule for venue
Link fields equivalence to citation equivalence - e.g., if two citations are the same, their authors should be the same
Author (b1, a1) ^ Author (b2, a2) ^ SameBib (b1, b2) \Rightarrow SameAuthor (a1, a2)
...and that citations with the same author are more likely to be the same Author (b1, a1) ^ Author (b2, a2) ^ SameAuthor(a1, a2)
\Rightarrow SameBib (b1, b2)
Same rules for title
Same rules for venue

Benefits of MLN model

Standard non-MLN approach: build a classifier

 that given two citations tells you if they are the same or not, and then apply transitive closure
New MLN approach:

- performs collective entity resolution, where resolving one pair of entities helps to resolve pairs of related entities
e.g., inferring that a pair of citations are equivalent can provide evidence that the names AAAl-06 and 21st Natl. Conf. on Al refer to the same venue, even though they are superficially very different. This equivalence can then aid in resolving other entities.

Other MLN applications

- Information Extraction
- Co-reference Resolution Robot Mapping (infer the map of an indoor environment from laser range data)
- Link-based Clustering (uses relationships among the objects in determining similarity)
- Ontologies extraction from Text
.....

Lecture Overview

- Finish Inference in MLN
- Probability of a formula, Conditional Probability
- Markov Logic: applications
- Entity resolution
- Statistical Parsing!

Statistical Parsing

- Input: Sentence
- Output: Most probable parse
- PCFG: Production rules with probabilities
E.g.: $0.7 \mathrm{NP} \rightarrow \mathrm{N}$
$0.3 \mathrm{NP} \rightarrow$ Det N
- WCFG: Production rules with weights (equivalent)
- Chomsky normal form: $A \rightarrow B C$ or $A \rightarrow a$

John ate the pizza

Logical Representation of CFG

$$
\begin{array}{rl}
S \rightarrow N P V P & \mathrm{NP} \wedge \mathrm{VP} \Rightarrow \mathrm{~S} \\
& \mathrm{NP}(\mathrm{i}, \mathrm{j}) \wedge \mathrm{VP}(\mathrm{j}, \mathrm{k}) \Rightarrow \mathrm{S}(\mathrm{i}, \mathrm{k}) \\
\mathrm{C}(\mathrm{i}, \mathrm{k}) \Rightarrow \mathrm{NP}(\mathrm{i}, \mathrm{j}) \wedge \mathrm{VP}(\mathrm{j}, \mathrm{k})
\end{array}
$$

Which one would be a reasonable representation in logics?

- the $\log _{2}$ chases ${ }_{3}$ the c_{4} cat

Logical Representation of CFG

$$
\begin{aligned}
S & \rightarrow N P V P \\
N P & \rightarrow A d j N \\
N P & \rightarrow \operatorname{Det} N \\
V P & \rightarrow V N P
\end{aligned}
$$

$$
N P(i, j) \wedge V P(j, k)=>S(i, k)
$$

$$
\operatorname{Adj}(\mathrm{i}, \mathrm{j}) \wedge \mathrm{N}(\mathrm{j}, \mathrm{k})=>\mathrm{NP}(\mathrm{i}, \mathrm{k})
$$

$$
\operatorname{Det}(\mathrm{i}, \mathrm{j}) \wedge \mathrm{N}(\mathrm{j}, \mathrm{k})=>N P(\mathrm{i}, \mathrm{k})
$$

$$
V(\mathrm{i}, \mathrm{j}) \wedge \mathrm{NP}(\mathrm{j}, \mathrm{k}) \Rightarrow \mathrm{VP}(\mathrm{i}, \mathrm{k})
$$

Lexicon....

// Determiners U \quad +1
Token("a",i) => Det(i,i+1)
Token("the",i) => Det $(\underline{i, i+1)}$
// Adjectives
Token("big",i) => Adj(i,i+1)
Token("small",i) => Adj(i,i+1)
// Verbs
Token("chase",i) => V(i,i+1)
Token("chases",i) => V(i,i+1)
Token("eat",i) => V(i,i+1)
Token("eats",i) => V(i,i+1)
Token("fly",i) => V(i,i+1)
Token("flies",i) => V(i,i+1)
$\operatorname{Det}(0,1)$
$N(1,2)$
\uparrow
the cat ate the moose
// Nouns
Token("dogs",i) => N(i,i+1)
Token("dog",i) => N(i,i+1)
Token("cats",i) $=>$ N(i,i+1)
Token("cat",i) => N(i,i+1)
Token("fly",i) => N(i,i+1)
Token("flies",i) => N(i,i+1) ${ }^{\text {cesc } 422 . L \text { Leture } 32}$

Avoid two problems (1)

- If there are two or more rules with the same left side (such as NP => Adj N and NP => Det N need to enforce the constraint that only one of them fires
$N P(i, k)^{\wedge} \operatorname{Det}(i, j)=>7 \operatorname{Adj}(i, j)$
" If a noun phrase results in a determiner and a noun, it cannot result in and adjective and a noun".

Avoid two problems (2)

- Ambiguities in the lexicon.
homonyms belonging to different parts of speech, e.g., Fly (noun or verb),
only one of these parts of speech should be assigned.
We can enforce this constraint in a general manner by making mutual exclusion rules for each part of speech pair, i.e.:
$\urcorner \operatorname{Det}(i, j) \vee\urcorner \operatorname{Adj}(i, j)$
$\urcorner \operatorname{Det}(\mathrm{i}, \mathrm{j}) \vee\urcorner \mathrm{N}(\mathrm{i}, \mathrm{j})$
$\urcorner \operatorname{Det}(\mathrm{i}, \mathrm{j}) \vee\urcorner \vee(\mathrm{i}, \mathrm{j})$
$7 \operatorname{Adj}(\mathrm{i}, \mathrm{j}) \vee 7 \mathrm{~N}(\mathrm{i}, \mathrm{j})$
$\urcorner \operatorname{Adj}(\mathrm{i}, \mathrm{j}) \vee\urcorner \vee(\mathrm{i}, \mathrm{j})$
$\urcorner N(i, j) \vee\urcorner V(i, j)$

Statistical Parsing

Representation: Summary

- For each rule of the form $A \rightarrow B C$:

Formula of the form $B(i, j) \wedge C(j, k)=>$ A(i,k)
E.g.: NP (i,j) ^ VP (j,k) => S(i,k)

- For each rule of the form $\mathrm{A} \rightarrow \mathrm{a}$:

Formula of the form Token (a,i) => A (i,i+1)
E.g.: Token("pizza", i) => N(i,i+1)

- For each nonterminal: state that exactly one production holds (solve problem 1)
- Mutual exclusion rules for each part of speech pair (solve problem 2)

Statistical Parsing : Inference

- Evidence predicate: Token (token, position) E.g.: Token("pizza", 3) etc.
- Query predicates:

Constituent(position, position)
E.g.: $S(0,7\}$ "is this sequence of seven words a sentence?" but also $\operatorname{NP}(2,4)$

- What inference yields the most probable parse?

MAP!

Semantic Processing

Example: John ate pizza.
Grammar: $\quad \mathrm{S} \rightarrow \mathrm{NP}$ VP $\quad \mathrm{VP} \rightarrow \mathrm{V}$ NP $\quad \mathrm{V} \rightarrow$ ate $N P \rightarrow$ John \quad NP \rightarrow pizza

Token("John",0) => Participant(John, E, 0,1)
Token("ate",1) => Event(Eating,E,1,2)
Token("pizza",2) => Participant(pizza, E, 2, 3)
Event(Eating,e,i,j) ^ Participant(p,e,j,k) ^ VP(i,k) ^ V(i,j) ^ NP(j,k) => Eaten(p,e)

Event(Eating,e,j,k) ^ Participant(p,e,i,j) ^ $S(i, k) \wedge N P(i, j) \wedge V P(j, k)=>E a t e r(p, e)$

Event(t,e,i,k) => Isa(e,t)
Result: Isa(E,Eating), Eater(John,E), Eaten(pizza,E)

422 big picture: Where are we?

Planning

- Full Resolution
- SAT

$\frac{|$| \cdot | Value |
| :---: | :---: |
| • Approx | |
| Reinforceme | |}{App/ications of A//}

StarAI (statistical relational AI) Hybrid: Det +Sto

Prob CFG
Prob Relational Models Stochastic Markov Logics

Representation
Reasoning
Technique

Learning Goals for today's class

You can:

- Compute Probability of a formula, Conditional Probability
- Describe two applications of ML and explain the corresponding representations

Next Class on Mon

- Start Probabilistic Relational Models

Review Session

Nest Fri
room: check Plaza

