Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 32

Nov, 27, 2015

Slide source: from Pedro Domingos UW & Markov Logic: An Interface Layer for Artificial Intelligence Pedro Domingos and Daniel Lowd University of Washington, Seattle

Lecture Overview

- Finish Inference in MLN
 - Probability of a formula, Conditional Probability
- Markov Logic: applications
 - Entity resolution
 - Statistical Parsing! (not required, just for fun ;-)

Markov Logic: Definition

- A Markov Logic Network (MLN) is
 - a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
 - Together with a set C of constants,
- It defines a Markov network with
 - One binary node for each grounding of each predicate in the MLN
 - One feature/factor for each grounding of each formula F in the MLN, with the corresponding weight w

Grounding: substituting vars with constants

MLN features

- **6**
- 1.5
- $\forall x \; Smokes(x) \Rightarrow Cancer(x)$
- **1**.
- $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)

Computing Probabilities

$$P(Formula, M_{L,C}) = ?$$

 Brute force: Sum probs. of possible worlds where formula holds

$$M_{L,C}$$
 Markov Logic Network PW_F possible worlds in which F is true $P(F,M_{L,C}) = \sum_{pw \in PW_F} P(pw,M_{L,C})$

• MCMC: Sample worlds, check formula holds

$$S_F$$
 samples (i.e. possible worlds) in which Fistrue

$$P(F, M_{L,C}) = \frac{|S_F|}{|S|}$$

Computing Cond. Probabilities

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

Let's look at the simplest case

P(ground literal | conjuction of ground literals, $M_{L,C}$)

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

To answer this query do you need to create (ground)

the whole network?

Computing Cond. Probabilities

Let's look at the simplest case

P(ground literal | conjuction of ground literals, M_{L,C})

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

You do not need to create (ground) the part of the Markov Network from which the query is independent given the evidence

CPSC 422, Lecture 32

Computing Cond. Probabilities

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A))

The sub network is determined by the formulas (the logical structure of the problem)

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$

You can then perform Gibbs Sampling in this Sub Network

Lecture Overview

- Finish Inference in MLN
 - Probability of a formula, Conditional Probability
- Markov Logic: applications
 - Entity resolution
 - Statistical Parsing!

Entity Resolution

 Determining which observations correspond to the same real-world objects

- (e.g., database records, noun phrases, video regions, etc)
- Crucial importance in many areas (e.g., data cleaning, NLP, Vision)

Entity Resolution: Example

AUTHOR: H. POON & P. DOMINGOS

TITLE: UNSUPERVISED SEMANTIC PARSING

VENUE: *EMNLP-09*

AUTHOR: *Hoifung Poon and Pedro Domings*

TITLE: Unsupervised semantic parsing

VENUE: *Proceedings of the 2009 Conference on Empirical Methods in*

Natural Language Processing

AUTHOR: Poon, Hoifung and Domings, Pedro

TITLE: Unsupervised ontology induction from text

VENUE: Proceedings of the Forty-Eighth Annual Meeting of the

Association for Computational Linguistics

AUTHOR: H. Poon, P. Domings

TITLE: Unsupervised ontology induction

VENUE: ACL-10

CPSC 422, Lecture 32

SAME?

SAME?

Entity Resolution (relations)

Problem: Given citation database, find duplicate records Each citation has author, title, and venue fields We have 10 relations


```
Author (bib, author)

Title (bib, title)

Venue (bib, venue)

HasWord (author, word)

HasWord (title, word) indicate which words are present in each field;

HasWord (venue, word)
```

```
SameAuthor (author, author) represent field equality;
SameTitle(title, title)
SameVenue(venue, venue)

SameBib(bib, bib) represents citation equality;
```

Entity Resolution (formulas)

Predict citation equality based on words in the fields

```
of rules

one for

each word
Title(b1, t1) \wedge Title(b2, t2) \wedge
HasWord(t1,+word) \land HasWord(t2,+word) \Rightarrow
SameBib (b1, b2)
(NOTE: +word is a shortcut notation, you
actually have a rule for each word e.g.,
Title(b1, t1) \Lambda Title(b2, t2) \Lambda
HasWord(t1, "bayesian") A
HasWord(t2,"bayesian") \Rightarrow SameBib(b1, b2))
Same 1000s of rules for author
Same 1000s of rules for venue
```

CPSC 422, Lecture 32

Entity Resolution (formulas)

Transitive closure

```
SameBib (b1,b2) \land SameBib (b2,b3) \Rightarrow SameBib (b1,b3)
```

```
SameAuthor(a1,a2) ∧ SameAuthor(a2,a3) ⇒ SameAuthor(a1,a3)
Same rule for title
Same rule for venue
```

Link fields equivalence to citation equivalence — e.g., if two citations are the same, their authors should be the same

Author (b1, a1) \wedge Author (b2, a2) \wedge SameBib (b1, b2) \Rightarrow SameAuthor (a1, a2)

...and that citations with the same author are more likely to be the same Author (b1, a1) \wedge Author (b2, a2) \wedge SameAuthor (a1, a2)

 \Rightarrow SameBib(b1, b2)

Same rules for title Same rules for venue

Benefits of MLN model

Standard non-MLN approach: build a classifier that given two citations tells you if they are the same or not, and then apply transitive closure

New MLN approach:

 performs collective entity resolution, where resolving one pair of entities helps to resolve pairs of related entities

e.g., inferring that a pair of citations are equivalent can provide evidence that the names *AAAI-06* and *21st Natl. Conf. on AI* refer to the same venue, even though they are superficially very different. This equivalence can then aid in resolving other entities.

Other MLN applications

- Information Extraction
- Co-reference Resolution Robot Mapping (infer the map of an indoor environment from laser range data)
- Link-based Clustering (uses relationships among the objects in determining similarity)
- Ontologies extraction from Text

•

Lecture Overview

- Finish Inference in MLN
 - Probability of a formula, Conditional Probability

Not required

- Markov Logic: applications
 - Entity resolution
 - Statistical Parsing!

Statistical Parsing

- Input: Sentence
- Output: Most probable parse
- PCFG: Production rules with probabilities

E.g.:
$$0.7 \text{ NP} \rightarrow \text{N}$$

 $0.3 \text{ NP} \rightarrow \text{Det N}$

- WCFG: Production rules with weights (equivalent)
- Chomsky normal form:

$$A \rightarrow B C \text{ or } A \rightarrow a$$

Logical Representation of CFG

$$S \rightarrow NP VP$$

$$NP(i,j) \wedge VP(j,k) \Longrightarrow S(i,k)$$

$$S(i,k) => NP(i,j) \wedge VP(j,k)$$

Which one would be a reasonable representation in logics?

Logical Representation of CFG

$$S \rightarrow NP \ VP$$
 $NP(i,j) \land VP(j,k) => S(i,k)$
 $NP \rightarrow Adj \ N$ $Adj(i,j) \land N(j,k) => NP(i,k)$
 $NP \rightarrow Det \ N$ $Det(i,j) \land N(j,k) => NP(i,k)$
 $VP \rightarrow V \ NP$ $V(i,j) \land NP(j,k) => VP(i,k)$

Lexicon....

```
// Determiners U+ 1
Token("a",i) => Det(i,i+1)
Token("the",i) => Det(i,i+1)
// Adjectives
Token("big",i) \Rightarrow Adj(i,i+1)
Token("small",i) => Adj(i,i+1)
// Nouns
Token("dogs",i) => N(i,i+1)
Token("dog",i) => N(i,i+1)
Token("cats",i) => N(i,i+1)
Token("cat",i) => N(i,i+1)
Token("fly",i) => N(i,i+1)
Token("flies",i) \Rightarrow N(i,i+1)
```

// Verbs
Token("chase",i) => V(i,i+1)
Token("chases",i) => V(i,i+1)
Token("eat",i) => V(i,i+1)
Token("eats",i) => V(i,i+1)
Token("fly",i) => V(i,i+1)
Token("flies",i) => V(i,i+1)

Avoid two problems (1)

 If there are two or more rules with the same left side (such as NP => Adj N and NP => Det N need to enforce the constraint that only one of them fires

$NP(i,k) \wedge Det(i,j) => \neg Adj(i,j)$

"If a noun phrase results in a determiner and a noun, it cannot result in and adjective and a noun".

CPSC 422, Lecture 32

Avoid two problems (2)

- Ambiguities in the lexicon.
- homonyms belonging to different parts of speech,
- e.g., Fly (noun or verb),
- only one of these parts of speech should be assigned.

We can enforce this constraint in a general manner by making mutual exclusion rules for each part of speech

```
pair, i.e.:
```

```
¬ Det(i,j) v ¬ Adj(i,j)
¬ Det(i,j) v ¬ N(i,j)
¬ Det(i,j) v ¬ V(i,j)
¬ Adj(i,j) v ¬ N(i,j)
¬ Adj(i,j) v ¬ V(i,j)
¬ N(i,j) v ¬ V(i,j)
```


Statistical Parsing Representation: Summary

- For each rule of the form A → B C:
 Formula of the form B(i,j) ^ C(j,k) =>
 A(i,k)
 - E.g.: NP(i,j) $^{\text{VP}(j,k)} => S(i,k)$
- For each rule of the form A → a:
 Formula of the form Token(a,i) =>
 A(i,i+1)
 - E.g.: Token("pizza", i) => N(i,i+1)
- For each nonterminal: state that exactly one production holds (solve problem 1)
- Mutual exclusion rules for each part of speech pair (solve problem 2)

Evidence predicate: Token (token, position)

```
E.g.: Token ("pizza", 3) etc.
```

Query predicates:

```
Constituent (position, position)
```

```
E.g.: S(0,7) "is this sequence of seven words a sentence?" but also NP(2,4)
```

What inference yields the most probable parse?

MAP!

Semantic Processing

Example: John ate pizza.

Grammar: $S \rightarrow NP VP \qquad VP \rightarrow V NP \qquad V \rightarrow ate$

 $NP \rightarrow John$ $NP \rightarrow pizza$

```
Token("John",0) => Participant(John,E,0,1)
Token("ate",1) => Event(Eating,E,1,2)
Token("pizza",2) => Participant(pizza,E,2,3)
```

Event $(t,e,i,k) \Rightarrow Isa(e,t)$

Result: Isa(E, Eating), Eater(John, E), Eaten(pizza, E)

Learning Goals for today's class

You can:

- Compute Probability of a formula, Conditional Probability
- Describe two applications of ML and explain the corresponding representations

Next Class on Mon

· Start Probabilistic Relational Models