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Lecture Overview 

• Recap Markov Logic (Networks) 

• Relation to First-Order Logics 

• Inference in MLN 

• MAP Inference (most likely pw) 

• Probability of a formula, Conditional Probability 

 

 

 

 

 

 

 

 



Prob. Rel. Models vs. Markov Logic 
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MLN features 
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Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 
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MLN: parameters 
 For each grounded formula i we have a factor 
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 Same for all the 

groundings of the same 

formula 



MLN: prob. of possible world 
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MLN: prob. Of possible world 

 Probability of a world pw: 

 

 

 

 

Weight of formula i No. of true groundings of formula i in pw 
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Lecture Overview 

• Recap Markov Logic (Networks) 

• Relation to First-Order Logics 

• Inference in MLN 

• MAP Inference (most likely pw) 

• Probability of a formula, Conditional Probability 

 

 

 

 

 

 

 

 



How MLN s generalize FOL 
 Consider MLN containing only one formula 
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1))(|)((,  ARASPw “recovering logical entailment” 



How MLN s generalize FOL 

First order logic (with some mild assumptions) 

is a special Markov Logics obtained when  

 all the weight are equal  

 and tend to infinity 
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Lecture Overview 

• Recap Markov Logic (Networks) 

• Relation to First-Order Logics 

• Inference in MLN 

• MAP Inference (most likely pw ) 

• Probability of a formula, Conditional Probability 

 

 

 

 

 

 

 

 



Inference in MLN 

 MLN acts as a template for a Markov Network 

 We can always answer prob. queries using standard 

Markov network inference methods on the 

instantiated network 

 However, due to the size and complexity of the 

resulting network, this is often infeasible.  

 Instead, we combine probabilistic methods with 

ideas from logical inference, including satisfiability 

and resolution.  

 This leads to efficient methods that take full 

advantage of the logical structure. 
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MAP Inference 
 Problem: Find most likely state of world 

)(maxarg pwP
pw
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 Probability of a world pw: 

 

 

 

 Weight of formula i No. of true groundings of formula i in pw 
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MAP Inference 

 Are these two equivalent? 
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MAP Inference 

 Therefore, the MAP  problem in Markov logic 

reduces to finding the truth assignment that 

maximizes the sum of weights of satisfied 

formulas (let’s assume clauses) 

 

 

 This is just the weighted MaxSAT problem 

 Use weighted SAT solver 

(e.g., MaxWalkSAT [Kautz et al., 1997])  
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WalkSAT algorithm (in essence) 

(from lecture 21 – one change) 

(Stochastic) Local Search Algorithms can be used for 

this task! 

Evaluation Function: number of satisfied clauses 

WalkSat: One of the simplest and most effective algorithms: 

Start from a randomly generated interpretation (pw) 

• Pick randomly an unsatisfied clause 

• Pick a proposition/atom to flip (randomly 1 or 2) 

1. Randomly 

2. To maximize # of satisfied clauses 
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MaxWalkSAT algorithm (in essence)  

current pw <- randomly generated interpretation 

Generate new pw  by doing the following 

• Pick randomly an unsatisfied clause 

• Pick a proposition/atom to flip (randomly 1 or 2) 

1. Randomly 

2. To maximize ∑ weights(sat. clauses in resulting pw)  

 

 

 

 

Evaluation Function f(pw)  : ∑ weights(sat. clauses in pw) 



Computing Probabilities 

P(Formula|ML,C) = ? 

 Brute force: Sum probs. of possible worlds 

where formula holds 

 

 

 

 MCMC: Sample worlds, check formula holds 
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Computing Cond. Probabilities 

Let’s look at the simplest case 

P(ground literal | conjuction of ground literals, ML,C) 
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P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A) ) 
 

To answer this query do you need to create (ground) 

the whole network? 
 

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 



Computing Cond. Probabilities 

Let’s look at the simplest case 

P(ground literal | conjuction of ground literals, ML,C) 
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P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A) ) 
 

You do not need to create (ground) the part of the 

Markov Network from which the query is independent 

given the evidence  
 



Computing Cond. Probabilities 
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P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A) ) 
 

Then you can perform Gibbs Sampling in  

this Sub Network 
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Learning Goals for today’s class 

You can: 

• Show on an example how MLNs generalize FOL 

• Compute the most likely pw  (given some evidence) 

• Probability of a formula, Conditional Probability 
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Next class on Fri 

• Markov Logic: applications 

• Start. Prob Relational Models 

 

 

CPSC 322, Lecture 31 23 



Inference in MLN 

 MLN acts as a template for a Markov Network 

 We can always answer prob. queries using standard 

Markov network inference methods on the 

instantiated network 

 However, due to the size and complexity of the 

resulting network, this is often infeasible.  

 Instead, we combine probabilistic methods with 

ideas from logical inference, including satisfiability 

and resolution.  

 This leads to efficient methods that take full 

advantage of the logical structure. 

 CPSC 322, Lecture 34 24 



MAP Inference 

 Reduces to finding the pw that maximizes the 

sum of weights of satisfied clauses 

 

 

 Use weighted SAT solver 

(e.g., MaxWalkSAT [Kautz et al., 1997])  
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 Find most likely state of world 

)(maxarg pwP
pw

Probabilistic problem solved by logical inference method 



Computing Probabilities 

P(Formula,ML,C) = ? 

 Brute force: Sum probs. of possible worlds 

where formula holds 

 

 

 

 MCMC: Sample worlds, check formula holds 
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Computing Cond. Probabilities 

Let’s look at the simplest case 

P(ground literal | conjuction of ground literals, ML,C) 
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P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A) ) 
 

To answer this query do you need to create (ground) 

the whole network? 
 

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 
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Computing Cond. Probabilities 

Let’s look at the simplest case 

P(ground literal | conjuction of ground literals, ML,C) 
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P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A) ) 
 

You do not need to create (ground) the part of the 

Markov Network from which the query is independent 

given the evidence  
 



Computing Cond. Probabilities 
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P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A) ) 
 

You can then perform Gibbs Sampling in  

this Sub Network 
 

The sub network is determined by the formulas  

(the logical structure of the problem) 
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Lecture Overview 
• Finish Inference in MLN 

• Probability of a formula, Conditional Probability 

• Markov Logic: applications 

• Beyond 322/422 (ML + grad courses) 

• AI conf. and journals 

• Watson…. 

• Final Exam (office hours, samples) 

• TA evaluation  
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Entity Resolution 

CPSC 322, Lecture 34 

• Determining which observations correspond to 

the same real-world objects  

 
 

• (e.g., database records, noun phrases, video 

regions, etc) 

 

• Crucial importance in many areas  

(e.g., data cleaning, NLP, Vision) 
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Entity Resolution: Example 

AUTHOR: H. POON & P. DOMINGOS 

TITLE: UNSUPERVISED SEMANTIC PARSING 

VENUE: EMNLP-09 

AUTHOR: Hoifung Poon and Pedro Domings 

TITLE: Unsupervised semantic parsing 

VENUE: Proceedings of the 2009 Conference on Empirical Methods in 

Natural Language Processing  

AUTHOR: Poon, Hoifung and Domings, Pedro 

TITLE: Unsupervised ontology induction from text 

VENUE: Proceedings of the Forty-Eighth Annual Meeting of the 

Association for Computational Linguistics   

AUTHOR: H. Poon, P. Domings 

TITLE: Unsupervised ontology induction 

VENUE: ACL-10  

SAME? 

SAME? 

CPSC 322, Lecture 34 
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Problem: Given citation database, find duplicate records 
Each citation has author, title, and venue fields 

We have 10 relations 
 

Author(bib,author) 

Title(bib,title) 

Venue(bib,venue) 

 

HasWord(author, word) 

HasWord(title, word) 

HasWord(venue, word) 

 

SameAuthor (author, author) 

SameTitle(title, title) 

SameVenue(venue, venue) 

 

SameBib(bib, bib) 

 

 

Entity Resolution (relations) 

CPSC 322, Lecture 34 

indicate which words are present 

in each field; 

represent field equality; 

represents citation equality; 

relate citations to their fields 
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Predict citation equality based on words in the fields 
 

Title(b1, t1) ∧ Title(b2, t2) ∧ 
HasWord(t1,+word) ∧ HasWord(t2,+word) ⇒ 
SameBib(b1, b2) 

 

(NOTE: +word is a shortcut notation, you 

actually have a rule for each word e.g.,  

Title(b1, t1) ∧ Title(b2, t2) ∧ 
HasWord(t1,”bayesian”) ∧ 
HasWord(t2,”bayesian” ) ⇒ SameBib(b1, b2) ) 
 

Same 1000s of rules for author 

 

Same 1000s of rules for venue 

 

 

Entity Resolution (formulas) 

CPSC 322, Lecture 34 
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Transitive closure 
SameBib(b1,b2) ∧ SameBib(b2,b3) ⇒ SameBib(b1,b3) 
 

SameAuthor(a1,a2) ∧ SameAuthor(a2,a3) ⇒ SameAuthor(a1,a3) 
Same rule for title 

Same rule for venue 

 

 

Entity Resolution (formulas) 
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Link fields equivalence to citation equivalence – e.g., if two citations 

are the same, their authors should be the same  
Author(b1, a1) ∧ Author(b2, a2) ∧ SameBib(b1, b2) ⇒ 
SameAuthor(a1, a2) 

…and that citations with the same author are more likely to be the same 

Author(b1, a1) ∧ Author(b2, a2) ∧ SameAuthor(a1, a2) 
⇒ SameBib(b1, b2) 
Same rules for title 

Same rules for venue 

 



Benefits of MLN model 
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Standard approach: build a classifier that given 

two citations tells you if they are the same or not, 

and then apply transitive closure 

 
New MLN approach:  

• performs collective entity resolution, where 

resolving one pair of entities helps to resolve 

pairs of related entities 

 
e.g., inferring that a pair of citations are equivalent can 

provide evidence that the names AAAI-06 and 21st Natl. 

Conf. on AI refer to the same venue, even though they are 

superficially very different. This equivalence can then aid in 

resolving other entities. 
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Other MLN applications 

CPSC 322, Lecture 34 

• Information Extraction 

• Co-reference Resolution (see lecture 1!) 

• Robot Mapping (infer the map of an indoor 

environment from laser range data) 

• Link-based Clustering (uses relationships 

among the objects in determining similarity) 

• Ontologies extraction from Text 

• ….. 
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Summary of tutorial on MLN 

for NLP at NA-ACL (2010) 
 We need to unify logical and statistical NLP 

 Markov logic provides a language for this 

 Syntax: Weighted first-order formulas 

 Semantics: Feature templates of Markov nets 

 Inference: Satisfiability, MCMC, lifted BP, etc. 

 Learning: Pseudo-likelihood, VP, PSCG, ILP, etc. 

 Growing set of NLP applications 

 Open-source software: Alchemy 

 

 Book: Domingos & Lowd, Markov Logic, 
Morgan & Claypool, 2009. 

 

 

alchemy.cs.washington.edu 

CPSC 322, Lecture 34 
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Learning Goals for today’s class 

You can: 

• Show on an example how MLNs generalize FOL 

• Compute the most likely pw given some evidence 

• Probability of a formula, Conditional Probability 
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Next class on Mon (last class) 

• Markov Logic: applications 

• Watson…. 

• Beyond 322/422 (ML + grad courses) 

• AI conf. and journals 

• Final Exam (office hours, samples) 
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Marked Summaries for last paper discussion 

Assignment-4 due on Mon (last class) 



The MaxWalkSAT Algorithm 

for i ← 1 to max-tries do 

    solution = random truth assignment 

    for j ← 1 to max-flips do 

        if ∑ weights(sat. clauses) > threshold then 

            return solution 

        c ← random unsatisfied clause 

        with probability p 

            flip a random variable in c 

        else 

            flip variable in c that maximizes 

                ∑ weights(sat. clauses)                 

return failure, best solution found 
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Markov Logic Network 
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What is the probability that a formula F1 holds given that 

formula F2 does? 
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Computing Probabilities 

 

P(Formula|Formula2,MLN,C) = ? 

 Discard worlds where Formula 2 does not hold 

 In practice: More efficient alternatives 
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Directed Models     vs. Undirected Models 

Parent 

Child 

Friend 1 

Friend 2 

 
P(Child|Parent) φ(Friend1,Friend2) 
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Undirected Probabilistic Logic Models 

• Upgrade undirected propositional models to relational 
setting 
 

• Markov Nets  Markov Logic Networks 
• Markov Random Fields  Relational Markov Nets 
• Conditional Random Fields  Relational CRFs 
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Markov Logic Networks (Richardson & 
Domingos) 

 Soften logical clauses 
– A first-order clause is a hard constraint on the world 

 

– Soften the constraints so that when a constraint is violated, the world 
is less probably, not impossible 

 

 

– Higher weight    Stronger constraint 

– Weight of         first-order logic  

 

Probability( World S ) = ( 1 / Z )   exp {  weight i x numberTimesTrue(f i, S)  } 
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Example: Friends & Smokers 

 

( ) ( )

, ( , ) ( ) ( )

x Smokes x Cancer x

x y Friends x y Smokes x Smokes y

 

  1.1

5.1

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 
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Alphabetic Soup => Endless Possibilities 

 Web data (web) 

 Biological data (bio) 

  Social Network Analysis 
(soc) 

 Bibliographic data (cite) 

 Epidimiological data (epi) 

 Communication data 
(comm) 

 Customer networks (cust) 

 Collaborative filtering 
problems (cf) 

 Trust networks (trust) 

… 

 

Fall 2003– Dietterich @ OSU, Spring 2004 –Page @ UW,  Spring 2007-Neville @ Purdue, 
Fall 2008 – Pedro @ CMU 

 Probabilistic Relational Models (PRM) 

 Bayesian Logic Programs (BLP) 

 PRISM 

 Stochastic Logic Programs (SLP) 

 Independent Choice Logic (ICL) 

 Markov Logic Networks (MLN) 

 Relational Markov Nets (RMN) 

 CLP-BN 

 Relational Bayes Nets (RBN) 

 Probabilistic Logic Progam (PLP) 

 ProbLog 

…. 
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Recent Advances in SRL Inference  

 Preprocessing for Inference 
  FROG – Shavlik & Natarajan (2009) 

 Lifted Exact Inference 
  Lifted Variable Elimination – Poole (2003), Braz et al(2005) Milch et al (2008) 

 Lifted VE + Aggregation – Kisynski & Poole (2009) 

 Sampling Methods  
 MCMC techniques – Milch & Russell (2006) 

 Logical Particle Filter – Natarajan et al (2008), ZettleMoyer et al (2007) 

  Lazy Inference – Poon et al (2008) 

 Approximate Methods 
 Lifted First-Order Belief Propagation – Singla & Domingos (2008) 

 Counting Belief Propagation – Kersting et  al (2009) 

  MAP Inference – Riedel (2008) 

 Bounds Propagation 
 Anytime Belief Propagation – Braz et al (2009) 
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Conclusion  

 Inference is the key issue in several SRL formalisms 

 FROG - Keeps the count of unsatisfied groundings  

 Order of Magnitude reduction in number of groundings 

 Compares favorably to Alchemy in different domains 

 Counting BP - BP + grouping nodes sending and receiving identical messages 

 Conceptually easy, scaleable BP algorithm 

 Applications to challenging AI tasks 

 Anytime BP – Incremental Shattering + Box Propagation 

 Only the most necessary fraction of model considered and shattered 

 Status – Implementation and evaluation  
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Relation to Statistical Models 

 Special cases: 
 Markov networks 

 Markov random fields 

 Bayesian networks 

 Log-linear models 

 Exponential models 

 Max. entropy models 

 Gibbs distributions 

 Boltzmann machines 

 Logistic regression 

 Hidden Markov models 

 Conditional random fields 

 

 Obtained by making all 
predicates zero-arity 

 

 Markov logic allows 
objects to be 
interdependent  
(non-i.i.d.) 
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