Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 30

Nov, 23, 2015

Slide source: from Pedro Domingos UW

422 big picture: Where are we?

StarAI (statistical relational AI)
Hybrid: Det +Sto Prob CFG
Prob Relational Models
Deterministic

Logics First Order Logics Ontologies	Belief Nets
	Approx. : Gibbs
	Markov Chains and HMMs
	Forward, Viterbi.... Approx. : Particle Filtering
- Full Resolution - SAT	Undirected Graphical Models Markov Networks Conditional Random Fields
	Markov Decision Processes Partially Observable MDP

Planning

$\frac{$| \cdot | Value I |
| :---: | :---: |
| • Approx | |
| Reinforceme | |}{App/ications of A//}

Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic

Statistical Relational Models

Goals:

- Combine (subsets of) logic and probability into a single language ($\mathbf{R \& R}$ system)
- Develop efficient inference algorithms
- Develop efficient learning algorithms
- Apply to real-world problems
L. Getoor \& B. Taskar (eds.), Introduction to Statistical Relational Learning, MIT Press, 2007.

Plethora of Approaches

- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models [Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Bayesian logic [Milch et al., 2005]
- Markov logic [Richardson \& Domingos, 2006]
- And many others....!

Prob. Rel. Models vs. Markov Logic
PRY
$\left.\begin{array}{l}\text { - Relational SKeleton } \\ \text { - Dependency Graph } \\ \text { - Parameters (CPT) }\end{array}\right\} \Rightarrow$ BNET
ML

- weighted logical formulas\} ~
- set of constants

Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic
- Markov Logic Network (MLN)

Parameterization of Markov Networks

Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

How do we combine local models?

As in BNets by multiplying them!

$$
\begin{aligned}
& \tilde{P}(A, B, C, D)=\phi_{1}(A, B) \times \phi_{2}(B, C) \times \phi_{3}(C, D) \times \phi_{4}(A, D) \\
& P(A, B, C, D)=\frac{1}{Z} \tilde{P}(A, B, C, D)
\end{aligned}
$$

Assignment				Unnormalized	$\begin{gathered} \text { Normalized } \\ .04 \end{gathered}$		
a^{0}		${ }^{0}$	${ }^{0}$	300000			
a^{0}	b^{0}	c^{0}	d^{1}	300000	. 04	$\phi_{4}[D, A]$	$\left.\phi_{1} A, B\right]$
a^{0}	b^{0}	c^{1}	d^{0}	300000	.04 -6	$\begin{array}{llll}a^{0} & a^{0} & 100\end{array}$	$\begin{array}{llll}a_{0}^{0} & b^{0} & 30\end{array}$
a^{0}	b°	c^{1}	d^{1}	30	4.1×10^{-6}		$\begin{array}{lll}a^{0} & b^{1} & 5 \\ a^{1} & b^{0} & 1\end{array}$
a^{0}	b^{1}	c^{0}	d^{0}	500			$\begin{array}{llll}a^{1} & b^{0} & 1 \\ a^{1} & b^{1} & 10\end{array}$
a^{0}	b^{1}	c^{0}	d^{1}	500			
a°	b^{1}	c^{1}	d^{0}	5000000	69	D	
a^{0}	b^{1}	c^{1}	d^{1}	500	,	D	B
a^{1}	b^{0}	c^{0}	d^{0}	100	,		
a^{1}	b^{0}	c^{0}	d^{1}	1000000		${ }_{3}[C, D]$	$\phi_{2}[B, C]$
a^{1}	b^{0}	c^{1}	d^{0}	100			
a^{1}	b^{0}	c^{1}	d^{1}	100		$\begin{array}{llll}c_{0}^{0} & d^{0} & 1 \\ c^{0} & d^{1} & 100\end{array}$	$\begin{array}{lll}c^{0} & 100 \\ c^{1} & \end{array}$
a^{1}	b^{1}	c^{0}	d^{0}	10			$\begin{array}{lllll}b^{1} & c & c^{0} & 1 \\ & \end{array}$
a^{1}	b^{1}	c^{0}	d^{1}	100000	,	$\begin{array}{llll}c^{1} & d^{1} & 1\end{array}$	$\begin{array}{llll}b^{1} & c^{1} & 100\end{array}$
a^{1}	b^{1}	c^{1}	d^{0}	100000			
a^{1}	b^{1}	c^{1}	d^{1}	100000	1		

Markov Networks

- Undirected graphical models

- Factors/Potential-functions defined over cliques

$$
\begin{gathered}
P(x)=\frac{1}{Z} \prod_{c} \Phi_{c}\left(x_{c}\right) \\
Z=\sum_{x} \prod_{c} \Phi_{c}\left(x_{c}\right)
\end{gathered}
$$

Smoking	Cancer	$\Phi(\mathbf{S}, \mathbf{C})$
F	F	4.5
F	T	4.5
T	F	2.7
T	T	4.5

Markov Networks :log-linear model

$$
P(x)=\frac{1}{Z} \prod_{c} \Phi_{c}\left(x_{c}\right)
$$

- Log-linear model:
each $\Phi_{c}\left(x_{c}\right)=e^{\omega_{c} t_{c}\left(x_{c}\right)}$
$w_{1}=0.51$
$f_{1}($ Smoking, Cancer $)= \begin{cases}1 & \text { if } \neg \text { Smoking } \vee \text { Cancer }\end{cases}$

$$
\begin{array}{r}
P(x)=\frac{1}{Z} \exp \left(\sum_{i} \frac{w_{i} f_{i}\left(x_{i}\right)}{i}\right) \\
\quad \text { Weight of Feature it } \\
\text { Feature it }
\end{array}
$$

Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks
- Markov Logic

Markov Logic: Intuition(1)

- A logical KB is a set of hard constraints on the set of possible worlds

$$
\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)
$$

In FOL $\hat{\omega}$ is

$$
\begin{aligned}
& \text { InDivinvals }=\{a, b\} \\
& \text { Smokes (} 2 \text {) }=T \\
& \operatorname{Cancer}(a)=F \\
& \text { smokes }(b)=F \\
& \operatorname{cancer}(b)=F
\end{aligned}
$$

iislicker.
A. possible
B. impossible
C. cannot tell

Markov Logic: Intuition(1)

- A logical KB is a set of hard constraints on the set of possible worlds

$$
\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)
$$

$$
\text { Individuals }=\{a, b\}
$$

$$
\left.\begin{array}{l}
\operatorname{Smokes}(a)=T \\
\operatorname{Cancer}(a)=F \\
\operatorname{Smokes}(b)=F \\
\operatorname{cancer}(b)=F
\end{array}\right\}
$$

- Let's make them soft constraints: When a world violates a formula, the world becomes less probable, not impossible
if \hat{f} is True $\mathbb{P}(\hat{\omega})$ decreases
$F_{0} \mid{ }^{\text {in }} \omega \underset{\sim}{ } \rightarrow P(\hat{\omega})$ increases \qquad

Markov Logic: Intuition (2)

- The more formulas in the KB a possible world satisfies the more it should be likely
- Give each formula a weight
- By design, if a possible world satisfies a formula its log probability should go up proportionally to the formula weight.
$\log (\mathrm{P}($ world $)) \propto\left(\sum\right.$ weights of formulas it satisfies $)$
$\mathrm{P}($ world $) \propto \exp \left(\sum\right.$ weights of formulas it satisfies $)$

Markov Logic: Definition

- A Markov Logic Network (MLN) is
- a set of pairs (F, w) where
- F is a formula in first-order logic
- w is a real number
- Together with a set C of constants,
- It defines a Markov network with

Grounding:
substituting vars with constants

- One binary node for each grounding of each predicate in the MLN
- One feature/factor for each grounding of each formula F in the MLN, with the corresponding weight w

(not required)consider Existential and functions

Table 2.2: Construction of all groundings of a first-order formula under Assumptions 2.2-2.4.
function Ground (F)
input: F, a formula in first-order logic
output: G_{F}, a set of ground formulas
for each existentially quantified subformula $\exists x S(x)$ in F
$F \leftarrow F$ with $\exists x S(x)$ replaced by $S\left(c_{1}\right) \vee S\left(c_{2}\right) \vee \ldots \vee S\left(c_{|C|}\right)$,
where $S\left(c_{i}\right)$ is $S(x)$ with x replaced by c_{i}
$G_{F} \leftarrow\{F\}$
for each universally quantified variable x
for each formula $F_{j}(x)$ in G_{F}
$G_{F} \leftarrow\left(G_{F} \backslash F_{j}(x)\right) \cup\left\{F_{j}\left(c_{1}\right), F_{j}\left(c_{2}\right), \ldots, F_{j}\left(c_{|C|}\right)\right\}$,
where $F_{j}\left(c_{i}\right)$ is $F_{j}(x)$ with x replaced by c_{i}
for each formula $F_{j} \in G_{F}$
repeat
for each function $f\left(a_{1}, a_{2}, \ldots\right)$ all of whose arguments are constants
$F_{j} \leftarrow F_{j}$ with $f\left(a_{1}, a_{2}, \ldots\right)$ replaced by c, where $c=f\left(a_{1}, a_{2}, \ldots\right)$
until F_{j} contains no functions
return G_{F}

Example: Friends \& Smokers

Smoking causes cancer.

Friends have similar smoking habits.

Example: Friends \& Smokers

$\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$\forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Example: Friends \& Smokers

1.5 $\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
1.1 $\forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Example: Friends \& Smokers

$1.5 \quad \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
$1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$
Two constants: Anna (A) and Bob (B)

MLN nodes

$$
\begin{array}{l|l}
1.5 & \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
1.1 & \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y)) \\
\hline
\end{array}
$$

Two constants: Anna (A) and Bob (B)

- One binary node for each grounding of each predicate in the MLN

Grounding:
substituting vars
with constants

Cancer(A)

- Any nodes missing?

MLN nodes (complete)

$$
\begin{array}{l|l}
\hline 1.5 & \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
1.1 & \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))
\end{array}
$$

Two constants: Anna (A) and Bob (B)

- One binary node for each grounding of each predicate in the MLN

Friends (A, B)

MLN features

$1.5 \quad \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
1.1 $\forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Two constants: Anna (A) and Bob (B)
Edge between two nodes iff the corresponding ground predicates appear together in at least one grounding of one formula

irclicker.

Which edge should not be there?
A. 1
13.2
C. 3
D. 4

MLN features

```
1.5 \forallx Smokes ( }x\mathrm{ ) }=>\mathrm{ Cancer ( }x\mathrm{ )
1.1 }\forallx,y\operatorname{Friends}(x,y)=>(Smokes(x)\Leftrightarrow\operatorname{Smokes}(y)
```

Two constants: Anna (A) and Bob (B)
Edge between two nodes iff the corresponding ground predicates appear together in at least one grounding of one formula

MLN features

1.5	$\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
1.1	$\forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Two constants: Anna (A) and Bob (B)

One feature/factor for each grounding of each formula F in the MLN

MLN: parameters

- For each formula i we have a factor
 w_{i} weight of formula

$$
f_{i}(p a)= \begin{cases}1 & \text { when formula is true in pw } \\ 0 & \text { otherwise }\end{cases}
$$

1.5 $\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$

$$
f(\operatorname{Smokes}(\mathrm{x}), \operatorname{Cancer}(\mathrm{x}))=\left\{\begin{array}{cc}
1 & \text { if } \text { Smokes }(\mathrm{x}) \Rightarrow \operatorname{Cancer}(\mathrm{x}) \\
0 & \text { otherwise }
\end{array}\right.
$$

pw,

$$
\begin{aligned}
& \text { Surges }(A) \quad T \\
& \text { Cancer }(A) \quad F e^{0}=1
\end{aligned}
$$

MLN: prob. of possible world

(1) $1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$
(0) $1.1 \forall x, y$ Friends $(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))$

Two constants: Anna (A) and Bob (B)

$$
P(p w)=\frac{1}{Z} \prod_{c} \Phi_{c}\left(p w_{c}\right)
$$

$P(p \omega)=\left(e_{1}^{1.1} * e_{6}^{1.1} * \underset{3}{e_{\text {(PPC } 322 . \text { Lecture } 30}^{0}} * e_{4}^{0} * e_{2}^{1.5} * e^{0}\right) / z_{29}$

MLN: prob. of possible world

(1) $1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)$

```
1.1 \forallx,y Friends (x,y)=>(Smokes }(x)\Leftrightarrow\operatorname{Smokes}(y)
```

Two constants: Anna (A) and Bob (B)

$$
P(p w)=\frac{1}{Z} \prod_{c} \Phi_{c}\left(p w_{c}\right)
$$

MLN: prob. Of possible world

- Probability of a world $p w$:

$$
\begin{gathered}
P(p w)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} \mid n_{i}(p w)\right. \\
\quad \text { Weight of formula } i \quad \text { No. of true groundings of formula } i \text { in } p w
\end{gathered}
$$

Learning Goals for today's class

You can:

- Describe the intuitions behind the design of a Markov Logic
- Define and Build a Markov Logic Network
- Justify and apply the formula for computing the probability of a possible world

Next class on Wed

Markov Logic

-relation to FOL

- Inference (MAP and Cond. Prob)

Assignment-4 posted, due on Dec 2

Relation to First-Order Logic

- Example pag 17
- Infinite weights \Rightarrow First-order logic
- Satisfiable KB, positive weights \Rightarrow Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

Relation to Statistical Models

- Special cases:
- Markov networks
- Markov random fields
- Bayesian networks
- Log-linear models
- Exponential models
- Max. entropy models
- Gibbs distributions
- Boltzmann machines
- Logistic regression
- Hidden Markov models
- Conditional random fields
- Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)

MAP Inference

- Problem: Find most likely state of world given evidence

MAP Inference

- Problem: Find most likely state of world given evidence

$$
\underset{y}{\arg \max } \frac{1}{Z_{x}} \exp \left(\sum_{i} w_{i} n_{i}(x, y)\right)
$$

MAP Inference

- Problem: Find most likely state of world given evidence

$$
\underset{y}{\arg \max } \sum_{i} w_{i} n_{i}(x, y)
$$

MAP Inference

- Problem: Find most likely state of world given evidence

$$
\underset{y}{\arg \max } \sum_{i} w_{i} n_{i}(x, y)
$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver (e.g., MaxWalkSAT [Kautz et al., 1997]

The MaxWalkSAT Algorithm

for $i \leftarrow 1$ to max-tries do
solution = random truth assignment for $j \leftarrow 1$ to max-flips do
if \sum weights(sat. clauses) $>$ threshold then return solution
$c \leftarrow$ random unsatisfied clause
with probability p
flip a random variable in c
else
flip variable in c that maximizes
Σ weights(sat. clauses)
return failure, best solution found

Computing Probabilities

- $\mathrm{P}($ Formula|MLN,C) $=$?
- Brute force: Sum probs. of worlds where formula holds
- MCMC: Sample worlds, check formula holds
- $\mathrm{P}($ Formula1|Formula2,MLN,C) $=$?
- Discard worlds where Formula 2 does not hold
- In practice: More efficient alternatives

Directed Models vs. Undirected Models

Undirected Probabilistic Logic Models

- Upgrade undirected propositional models to relational setting
- Markov Nets \rightarrow Markov Logic Networks
- Markov Random Fields \rightarrow Relational Markov Nets
- Conditional Random Fields \rightarrow Relational CRFs

Markov Logic Networks (Richardson \& Domingos)

- Soften logical clauses
- A first-order clause is a hard constraint on the world

$$
\forall x, \operatorname{person}(x) \rightarrow \exists y, \operatorname{person}(y), \text { father }(x, y)
$$

- Soften the constraints so that when a constraint is violated, the world is less probably, not impossible

$$
w: \text { friends }(x, y) \wedge \operatorname{smokes}(x) \rightarrow \operatorname{smokes}(y)
$$

- Higher weight \Rightarrow Stronger constraint
- Weight of $\infty \Rightarrow$ first-order logic

Probability $($ World S$)=(1 / Z) \times \exp \left\{\Sigma\right.$ weight $_{\mathrm{i}} \times$ numberTimesTrue $\left.\left(\mathbf{f}_{\mathrm{i}}, \mathbf{S}\right)\right\}$

Example: Friends \& Smokers

$$
\begin{array}{l|l}
1.5 & \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
1.1 & \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))
\end{array}
$$

Two constants: Anna (A) and Bob (B)

Alphabetic Soup => Endless Possibilities

> Probabilistic Relational Models (PRM)
> Bayesian Logic Programs (BLP)
$>$ PRISM
$>$ Stochastic Logic Programs (SLP)
> Independent Choice Logic (ICL)
> Markov Logic Networks (MLN)
$>$ Relational Markov Nets (RMN)
> CLP-BN
> Relational Bayes Nets (RBN)
$>$ Probabilistic Logic Progam (PLP)
> ProbLog

Fall 2003- Dietterich @ OSU, Spring 2004 -Page @ UW, Spring 2007-Neville @ Purdue, Fall 2008 - Pedro @ CMU

Recent Advances in SRL Inference

> Preprocessing for Inference
\square FROG - Shavlik \& Natarajan (2009)
$>$ Lifted Exact Inference
\square Lifted Variable Elimination - Poole (2003), Braz et al(2005) Milch et al (2008)
\square Lifted VE + Aggregation - Kisynski \& Poole (2009)
$>$ Sampling Methods
\square MCMC techniques - Milch \& Russell (2006)
\square Logical Particle Filter - Natarajan et al (2008), ZettleMoyer et al (2007)
\square Lazy Inference - Poon et al (2008)
> Approximate Methods
\square Lifted First-Order Belief Propagation - Singla \& Domingos (2008)
\square Counting Belief Propagation - Kersting et al (2009)
\square MAP Inference - Riedel (2008)
> Bounds Propagation
\square Anytime Belief Propagation - Braz et al (2009)

Conclusion

$>$ Inference is the key issue in several SRL formalisms
$>$ FROG - Keeps the count of unsatisfied groundings
\square Order of Magnitude reduction in number of groundings
Compares favorably to Alchemy in different domains
$>$ Counting BP - BP + grouping nodes sending and receiving identical messages
\square Conceptually easy, scaleable BP algorithm
\square Applications to challenging Al tasks
$>$ Anytime BP - Incremental Shattering + Box Propagation
\square Only the most necessary fraction of model considered and shattered
\square Status - Implementation and evaluation

