## Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 30

Nov. 23, 2015

Slide source: from Pedro Domingos UW

## 422 big picture: Where are we?

StarAl (statistical relational Al)

Hybrid: Det +Sto

Prob CFG
Prob Relational Models
Markov Logics

**Deterministic** 

Stochastic

Query

**Planning** 

Logics First Order Logics

**Ontologies** 

- Full Resolution
- SAT

**Belief Nets** 

Approx.: Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx. : Particle Filtering

Undirected Graphical Models

Markov Networks

Conditional Random Fields

Markov Decision Processes and Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of Al

Representation

Reasoning Technique

## Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic

#### Statistical Relational Models



#### Goals:

- Combine (subsets of) logic and probability into a single language (R&R system)
- Develop efficient inference algorithms
- Develop efficient learning algorithms
- Apply to real-world problems

L. Getoor & B. Taskar (eds.), *Introduction to Statistical Relational Learning*, MIT Press, 2007.

CPSC 322, Lecture 30

## Plethora of Approaches



- Knowledge-based model construction [Wellman et al., 1992]
- Stochastic logic programs [Muggleton, 1996]
- Probabilistic relational models [Friedman et al., 1999]
- Relational Markov networks [Taskar et al., 2002]
- Bayesian logic [Milch et al., 2005]
- Markov logic [Richardson & Domingos, 2006]
- And many others....!

## Prob. Rel. Models vs. Markov Logic



## Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks and log-linear models
- Markov Logic
  - Markov Logic Network (MLN)

#### Parameterization of Markov Networks



X set of random  
Vovs: Afactor is  

$$\Phi(Val(X)) \rightarrow |P|$$

Factors define the local interactions (like CPTs in Bnets)
What about the global model? What do you do with Bnets?

#### How do we combine local models?

#### As in BNets by multiplying them!

$$\tilde{P}(A, B, C, D) = \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(A, D)$$
$$P(A, B, C, D) = \frac{1}{Z}\tilde{P}(A, B, C, D)$$

| As signment |       |       | nt    | Unnormalized | Normalized |                                  |                                                                 |
|-------------|-------|-------|-------|--------------|------------|----------------------------------|-----------------------------------------------------------------|
| $a^0$       | $b^0$ | $c^0$ | $d^0$ | 300000       | .04        | (D 41                            | ( [4 D]                                                         |
| $a^0$       | $b^0$ | $c^0$ | $d^1$ | 300000       | .04        | $\phi_4[D,A]$                    | $\phi_1[A,B]$                                                   |
| $a^0$       | $b^0$ | $c^1$ | $d^0$ | 300000       | .04        | $d^0 = a^0 = 100$                | $a^0 b^0 30$                                                    |
| $a^0$       | $b^0$ | $c^1$ | $d^1$ | 30           | 4.1×10-6   | $d^0$ $a^1$ 1 ( $\boldsymbol{A}$ | $a^0 b^1 5$                                                     |
| $a^0$       | $b^1$ | $c^0$ | $d^0$ | 500          |            | $d^1  a^0  1$                    | $\begin{pmatrix} a^1 & b^0 & 1 \\ a^1 & b^1 & 10 \end{pmatrix}$ |
| $a^0$       | $b^1$ | $c^0$ | $d^1$ | 500          |            | $d^1 = a^1 = 100$                | a 0 10                                                          |
| $a^0$       | $b^1$ | $c^1$ | $d^0$ | 5000000      | . 69       |                                  |                                                                 |
| $a^0$       | $b^1$ | $c^1$ | $d^1$ | 500          |            | ( D )                            | ( B )                                                           |
| $a^1$       | $b^0$ | $c^0$ | $d^0$ | 100          | ``         |                                  |                                                                 |
| $a^1$       | $b^0$ | $c^0$ | $d^1$ | 1000000      | •          | + IC DI                          | $\phi_2[B,C]$                                                   |
| $a^1$       | $b^0$ | $c^1$ | $d^0$ | 100          | •          | $\phi_3[C,D]$                    | (P2[D,C]                                                        |
| $a^1$       | $b^0$ | c1    | $d^1$ | 100          | •          | $c^{0} d^{0} = 1$ ( C            | $b^0 c^0 100$                                                   |
| $a^1$       | $b^1$ | $c^0$ | $d^0$ | 10           | •          | $c^0$ $d^1$ 100                  | $b^{0}  c^{1}  1 \\ b^{1}  c^{0}  1$                            |
| $a^1$       | $b^1$ | $c^0$ | $d^1$ | 100000       |            | $c^1  d^0  100$<br>$c^1  d^1  1$ | $b^1$ $c^1$ 100                                                 |
| $a^1$       | b1    | $c^1$ | $d^0$ | 100000       | •          | 20 20 2                          |                                                                 |
| $a^1$       | $b^1$ | $c^1$ | $d^1$ | 100000       | <b>)</b>   |                                  |                                                                 |

#### **Markov Networks**

Undirected graphical models





Factors/Potential-functions defined over cliques

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

$$Z = \sum_{x} \prod_{c} \Phi_{c}(x_{c})$$

| Smoking | Cancer | Ф(S,C) |
|---------|--------|--------|
| F       | F      | 4.5    |
| F       | Т      | 4.5    |
| Т       | F      | 2.7    |
| Т       | Т      | 4.5    |

## Markov Networks : log-linear model

$$P(x) = \frac{1}{Z} \prod_{c} \Phi_{c}(x_{c})$$

Log-linear model:

each 
$$\Phi(x_c) = e^{w_c + c(x_c)}$$

$$w_1 = 0.51$$

$$w_1 = 0.51$$
 $f_1(\text{Smoking, Cancer}) = \begin{cases} 1 & \text{if } \neg \text{Smoking} \lor \text{Cancer} \\ 0 & \text{otherwise} \end{cases}$ 

$$P(x) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} f_{i}(x_{i})\right)$$
Weight of Feature *i* Feature *i*

**Asthma** 

Cough

Cancer

12

## Lecture Overview

- Statistical Relational Models (for us aka Hybrid)
- Recap Markov Networks
- Markov Logic

## **Markov Logic: Intuition(1)**

 A logical KB is a set of hard constraints on the set of possible worlds \_ CONSTANT

$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$









## **Markov Logic: Intuition(1)**



 A logical KB is a set of hard constraints on the set of possible worlds







Let's make them soft constraints:
 When a world violates a formula,
 the world becomes less probable, not impossible



## **Markov Logic: Intuition (2)**





- Give each formula a weight
- By design, if a possible world satisfies a formula its log probability should go up proportionally to the formula weight.

$$log(P(world)) \propto (\sum weights of formulas it satisfies)$$

$$P(world) \propto exp(\sum weights of formulas it satisfies)$$

CPSC 322, Lecture 30

## **Markov Logic: Definition**

- A Markov Logic Network (MLN) is
  - a set of pairs (F, w) where
    - F is a formula in first-order logic
    - w is a real number
  - Together with a set C of constants,
- It defines a Markov network with
  - One binary node for each grounding of each predicate in the MLN
  - One feature/factor for each grounding of each formula F in the MLN, with the corresponding weight w

**Grounding**: substituting vars with constants

# (not required)consider Existential and functions



Table 2.2: Construction of all groundings of a first-order formula under Assumptions 2.2–2.4.

```
function Ground(F)
  input: F, a formula in first-order logic
  output: G_F, a set of ground formulas
for each existentially quantified subformula \exists x \ S(x) in F
   F \leftarrow F with \exists x \ S(x) replaced by S(c_1) \lor S(c_2) \lor ... \lor S(c_{|C|}),
     where S(c_i) is S(x) with x replaced by c_i
G_F \leftarrow \{F\}
for each universally quantified variable x
  for each formula F_i(x) in G_F
     G_F \leftarrow (G_F \setminus F_j(x)) \cup \{F_j(c_1), F_j(c_2), \dots, F_j(c_{|C|})\},\
        where F_i(c_i) is F_i(x) with x replaced by c_i
for each formula F_j \in G_F
  repeat
     for each function f(a_1, a_2, ...) all of whose arguments are constants
     F_j \leftarrow F_j with f(a_1, a_2, ...) replaced by c, where c = f(a_1, a_2, ...)
   until F_i contains no functions
return GF
```



Smoking causes cancer.

Friends have similar smoking habits.



```
\forall x \ Smokes(x) \Rightarrow Cancer(x)
\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```



1.5 
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

1.1 
$$\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$$



```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)

1.1 \forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)
```

Two constants: **Anna** (A) and **Bob** (B)

#### **MLN** nodes

- 1.5  $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1  $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$



Two constants: **Anna** (A) and **Bob** (B)

One binary node for each grounding of each predicate in the MLN

**Grounding**: substituting vars with constants



Smokes(B)



Cancer(B)

Any nodes missing?

## MLN nodes (complete)

```
1.5 \forall x \ Smokes(x) \Rightarrow Cancer(x)
```

1.1 
$$\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$$



#### Two constants: Anna (A) and Bob (B)

One binary node for each grounding of each predicate in the MLN

Friends(A,B)

Friends(A,A)

Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Friends(B,A)

Cancer(B)

#### **MLN** features

- 1.5  $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1  $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$



Two constants: **Anna** (A) and **Bob** (B)

Edge between two nodes iff the corresponding ground predicates appear together in at least one grounding of one formula



i≿licker.

Which edge should not be there?

A.1

B, 2

C.3

D.4

25

#### **MLN** features

- 1.5  $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1  $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$



Two constants: Anna (A) and Bob (B)

Edge between two nodes iff the corresponding ground predicates appear together in at least one grounding of one formula



#### **MLN** features

- **6**
- 1.5
- $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

- 40
- 1.1
- $\forall x, y \; Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)



One *feature/factor* for each **grounding** of each **formula** F in the MLN



## **MLN**: parameters

For each formula i we have a factor

1.5 
$$\forall x \ Smokes(x) \Rightarrow Cancer(x)$$

$$f(\text{Smokes}(x), \text{ Cancer}(x)) = \begin{cases} 1 & \text{if } \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \\ 0 & \text{otherwise} \end{cases}$$



## MLN: prob. of possible world

1.5  $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ 

- 40
- $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$



Two constants: **Anna** (A) and **Bob** (B)

Friends(A,B)
$$P(pw) = \frac{1}{Z} \prod_{c} \Phi_{c}(pw_{c})$$

Friends(A,A)

Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Friends(B,A)

Cancer(B)

## MLN: prob. of possible world

1.5  $\forall x \ Smokes(x) \Rightarrow Cancer(x)$ 

- 40

 $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$ 



Two constants: **Anna** (A) and **Bob** (B)



Friends(A,A)

Smokes(A)

Smokes(B)

Friends(B,B)

Cancer(A)

Friends(B,A)

Cancer(B)



## MLN: prob. Of possible world

Probability of a world pw:

$$P(pw) = \frac{1}{Z} \exp \left( \sum_{i} w_{i} n_{i}(pw) \right)$$
Weight of formula *i*
No. of true groundings of formula *i* in *pw*

Friends(A,B)

Friends(A,B)

Cancer(A)

Friends(B,A)

Cancer(B)

Friends(B,A)

$$(PW) = (PW) =$$

31

## Learning Goals for today's class

#### You can:

- Describe the intuitions behind the design of a Markov Logic
- Define and Build a Markov Logic Network
- Justify and apply the formula for computing the probability of a possible world

## Next class on Wed

## Markov Logic

- -relation to FOL
- Inference (MAP and Cond. Prob)

Assignment-4 posted, due on Dec 2

## Relation to First-Order Logic



Example pag 17

Infinite weights ⇒ First-order logic

- Satisfiable KB, positive weights ⇒
   Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

#### **Relation to Statistical Models**



- Special cases:
  - Markov networks
  - Markov random fields
  - Bayesian networks
  - Log-linear models
  - Exponential models
  - Max. entropy models
  - Gibbs distributions
  - Boltzmann machines
  - Logistic regression
  - Hidden Markov models
  - Conditional random fields

- Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)

#### **MAP Inference**



 Problem: Find most likely state of world given evidence



CPSC 322, Lecture 30





 Problem: Find most likely state of world given evidence

$$\underset{y}{\text{arg max}} \frac{1}{Z_{x}} \exp \left( \sum_{i} w_{i} n_{i}(x, y) \right)$$





 Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$





 Problem: Find most likely state of world given evidence

$$\underset{y}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(x, y)$$

- This is just the weighted MaxSAT problem
- Use weighted SAT solver
   (e.g., MaxWalkSAT [Kautz et al., 1997]

CPSC 322, Lecture 30

## The MaxWalkSAT Algorithm



```
for i \leftarrow 1 to max-tries do
  solution = random truth assignment
  for j \leftarrow 1 to max-flips do
     if ∑ weights(sat. clauses) > threshold then
        return solution
     c \leftarrow random unsatisfied clause
     with probability p
        flip a random variable in c
     else
        flip variable in c that maximizes
          > weights(sat. clauses)
return failure, best solution found
```

## **Computing Probabilities**



- P(Formula|MLN,C) = ?
- Brute force: Sum probs. of worlds where formula holds
- MCMC: Sample worlds, check formula holds
- P(Formula1|Formula2,MLN,C) = ?
- Discard worlds where Formula 2 does not hold
- In practice: More efficient alternatives

CPSC 322, Lecture 30

#### Directed Models vs. Undirected Models



## **Undirected Probabilistic Logic Models**

- Upgrade undirected propositional models to relational setting
  - Markov Nets → Markov Logic Networks
  - Markov Random Fields  $\rightarrow$  Relational Markov Nets
  - Conditional Random Fields → Relational CRFs



## Markov Logic Networks (Richardson & Domingos)

- Soften logical clauses
  - A first-order clause is a hard constraint on the world

```
\forall x, person(x) \rightarrow \exists y, person(y), father(x, y)
```

 Soften the constraints so that when a constraint is violated, the world is less probably, not impossible

```
w: friends(x, y) \land smokes(x) \rightarrow smokes(y)
```

- − Higher weight ⇒ Stronger constraint
- Weight of  $\infty$   $\Rightarrow$  first-order logic

Probability(World S) =  $(1/Z) \times \exp \{ \Sigma \text{ weight}_i \times \text{numberTimesTrue}(f_i, S) \}$ 



- 1.5  $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1  $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: Anna (A) and Bob (B)



#### **Alphabetic Soup => Endless Possibilities**

- Probabilistic Relational Models (PRM)
- Bayesian Logic Programs (BLP)
- **PRISM**
- Stochastic Logic Programs (SLP)
- Independent Choice Logic (ICL)
- Markov Logic Networks (MLN)
- Relational Markov Nets (RMN)
- CLP-BN
- Relational Bayes Nets (RBN)
- Probabilistic Logic Progam (PLP)
- ProbLog

- Web data (web)
- Biological data (bio)
- Social Network Analysis (soc)
- Bibliographic data (cite)
- Epidimiological data (epi)
- Communication data (comm)
- Customer networks (cust)
- Collaborative filtering problems (cf)
- Trust networks (trust)

#### Recent Advances in SRL Inference

Preprocessing for Inference ☐ FROG – Shavlik & Natarajan (2009) Lifted Exact Inference Lifted Variable Elimination – Poole (2003), Braz et al(2005) Milch et al (2008) ☐ Lifted VE + Aggregation — Kisynski & Poole (2009) Sampling Methods ☐ MCMC techniques — Milch & Russell (2006) ☐ Logical Particle Filter — Natarajan et al (2008), ZettleMoyer et al (2007) Lazy Inference – Poon et al (2008) Approximate Methods ☐ Lifted First-Order Belief Propagation — Singla & Domingos (2008) ☐ Counting Belief Propagation – Kersting et al (2009) MAP Inference – Riedel (2008) **Bounds Propagation** ☐ Anytime Belief Propagation — Braz et al (2009)

#### Conclusion

- Inference is the key issue in several SRL formalisms
- FROG Keeps the count of unsatisfied groundings
  - ☐ Order of Magnitude reduction in number of groundings
  - ☐ Compares favorably to Alchemy in different domains
- Counting BP BP + grouping nodes sending and receiving identical messages
  - ☐ Conceptually easy, scaleable BP algorithm
  - ☐ Applications to challenging AI tasks
- Anytime BP Incremental Shattering + Box Propagation
  - ☐ Only the most necessary fraction of model considered and shattered
  - ☐ Status Implementation and evaluation