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Lecture Overview

* Recap Probabilistic Context Free Grammars
(PCFG)

« CKY parsing for PCFG (only key steps)

 PCFG in practice: Modeling Structural and
Lexical Dependencies
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PCFGs are used to....

+ Estimate Prob. of parse tree

rp(r ree) = l ) ?(@’ﬂ"”‘“““n[“’”“@

V)odeéTY‘e(
- Estimate Prob. to sentences

P(Sentence) = Z F(T@%

Trees e Farec Trees o) Centenng
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Head of a Phrase
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Acquiring Grammars and Probabilities

Manually parsed text corpora (e.g., PennTreebank)

+ Grammar: read it off the parse trees

Ex: if an NP contains an ART, ADJ, and NOUN then
we create the rule NP -> ART ADJ NOUN.

. Probabilities:
robabilities cou\«‘\TQAﬁOk> Cauv\'\(A_aos

S ot (Asg) et (A)
73

P(A—)d(A ) =
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Lecture Overview

« Recap Probabilistic Context Free Grammars
(PCFG)

« CKY parsing for PCFG (only key steps)

 PCFG in practice: Modeling Structural and
Lexical Dependencies
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Probabilistic Parsing:

- (Restricted) Task is to find the max
probability tree for an input

N

Tree(Sentence) = argmax P(Tree)

TreeeParse-trees(Senten ce)\
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Probabilistic CKY Algorithm '2'5]4351,9199199

CYK (Cocke-Kasami-Younger) algorithm
- A bottom-up parser using dynamic programming
- Assume the PCFG is in Chomsky normal form (CNF)
Definitions APBL A—>w
- W,.. w, an input string composed of nwords
- wia string of words from word /to word

- [z, j, A] : a table entry holds the maximum
probability for a constituent with non-terminal

A spanning words w;..w;

Wy [ W vU W,
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CKY: Base Case

Fill out the table entries by induction: Base case

- Consider the input strings of length one (i.e., each
individual word Wi) )[/q./v\ - AOOK 2

- Since the grammar is in Clef A—> w;

- So y[/, 1, A] P(A—> w) Auvx ‘7(3\/\\ Zf
"Can you, t TWA " —
Aﬁ‘ 3 Noun \/&ﬂ\o
[e=e
| @ .....
B |.5)5
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CKY: Recursive Case

Recursive case
- For strings of words of length @ 3
A *= wy; iff there is at least one rule A — BC
where B derives the first Awords (betweeni
and /+k-1 ) and n

/
- uli g Al = el kel 6] B/ N

*x

CPA->BO> LK

- (for each non-terminal)Choose the maAJ

among all possibilities
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CKY: Termination

The max prob parse will be y[7, n/S ]

"Can, you, book; TWA, flight; ?"

5 S
1 1.7x10-6
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Any other entry in this matrix for S?
— N

CKY: Termination

w B No C. Cannot Tell

B\Wflighfj} ?” 5

"Can; you,, book; /
~

— I

S
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CKY: anything missing? ~cec '

e

pz\'sq

The max prob parse will be [ T,u 5 ]

"Can, you, book; TWA, flight; ?“

1

A\)Xé\5

Toble

(7x10‘6

)

N

Table

S
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Lecture Overview

« Recap Probabilistic Context Free Grammars
(PCFG)

« CKY parsing for PCFG (only key steps)

 PCFG in practice: Modeling Structural and
Lexical Dependencies
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Problems with PCFGs

* Most current PCFG models are not vanilla

PCFGs

- Usually augmented in some way

* Vanilla PCFGs assume independence of
non-terminal expansions

* But statistical analysis shows this is not
a valid assumption
- Structural and lexical dependencies

CPSC 422, Lecture 28 17



Structural Dependencies: Problem

E.g. Syntactic subject of a sentence tends
to be a pronoun

- Subject tends to realize "old information”

- ‘Mary bought a new book for her trip. She didn’t like
the first chapter. So she decided to watch a movie.”

In Switchboard corpus:

Pronoun Non-Pronoun All dT2
Subject|91%) 9% o onoon  Mon-Fronoun

Object | 34% 66% 2.5 7% 3+.5 7
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How would you address this

problem?
Pronoun Non-Pronoun
< Subject[91% 9%
gu\o{ N Object [34%  66%
NP Y
/ A
\/ ™~ N
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Structural Dependencies: Solution
Split non-terminal. E.g., NPsubject and NPobject

Parent Annotation:

) (s b) S
e /‘/-/\"\
VP | NPs| VPS
| ;
PRP VBD NP PRP VBD( NP"VP
e L
{ need DT NN I need DT NN
I I
a flight a flight

Hand-write rules for more complex struct. dependencies
Splitting problems?

- Automatic/Optimal split - Split and Merge
algorithm [Petrov et al. 2006- COLING/ACL]
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Lexical Dependencies: Problem

Nerb

| ocal tree <‘ rmiu> @ ( !1;mt'x. ) @
TN -\ g5 2.8 4,69 = T

vir - VER) 1% 32.0% 025 13.99

v - VPP 34, 3. 1% 7. 1% (), 4%

=X (3. 6% 0.4% 7 3.0 K52

VP -\ § Sy 7 1.3% 4.8% 7O.NL

VP - VNP S (1% Vol .00, (). 3%

VP -\ PRT NP (). 3%, 5.8%, (O {662,

VP -« \V PRT PP T B I, 5% (). 2% SR

Table 12.2 [frequency o conumon subcateporization frames (local trees ex-
panding \VP) ol selected verbs, The data show that the rule used 10 (.‘?(;)Emd
VP is highly dependent on the tevical identity of the verb. The counts ignore
distinctons in verbatl form tags. Phrase names are as in table 121, and tags are
Penn Trechank tags (tables 4.5 and 4.0
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Lexical Dependencies: Problem

Two parse trees for the sentence
"Moscow sent troops into Afghanistan”

NP v NP B NYE

| |
R 1
Moscow sent NNS  p NP Moscow sent | NNS

. |
troops te NNP

|
Afghanistan

A o ——— I

PP

| A
troops P NP

irto

Afghanistan

VP-attachment NP-attachment

Typically NP-attachment more
frequent than VP-attachment
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Lexical Dependencies: Solution

+ Add lexical dependencies to the
scheme...

- Infiltrate the influence of particular
words into the probabilities of the rules

All the words?

(@) - P(VP -> V. NP PP | VP =sent troops into Afg.")
(b) - P(VP -> VNP | VP ="sent troops into Afg.")

A.
I%Oe%d B'Iggg C. Cannot Tell
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Lexical Dependencies: Solution

+ Add lexical dependencies to the
scheme...

- Infiltrate the influence of particular
words into the probabilities of the rules

- All the words?

(@) - P(VP -> V NP PP | VP = "sent troops into Afg.")

(b) - P(VP -> V NP l VP = “SQnT Tr\oops into Afgu)

Not likely to have significant counts
in any treebank!

- C. Cannot Tell
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Use only the Heads

» To do that we're going to make use of
the notion of the head of a phrase

- The head of an NP is its noun

- The head of a VP is its verb
- The head of a PP is its preposition

S
M
NP VP
| ﬁ
NNF v NP FF
| I
Maogecow zent NNS  p NP

. |
troops imta NNP

Afghanistan 25
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More specific rules

- We used to have rule r
- VP -> V NP PP P(r|VP)

* That's the count of this rule divided by the
number of VPs in a treebank

- Now we have rule r
- VP(h(VP))-> V(h(VP)) NP PP P(r | VP, h(VP))
GQQ- - VP(sent)-> V(sent) NP PP P(r | VP, sent)

What is the estimate for P(r | VP, sen?) ?

How many times was this rule used with sent, divided
by the number of VPs that sent appears in total

):o\F ezcl/l \/Wlo Y‘C‘\fle(ﬂl' Pfoh?\blll%es
I] KQ ¢ OVIZ§ | Vcpsc 422, Lecture 28 3,)9\( ZI 26



NLP Practical Goal for FOL (and Prob. Parsing)
the ultimate Web question-answering system?
Map NL queries info FOPC so that answers can

be effectively computed
What African countries are not on the Mediterranean Sea?

3¢ Country(c)—Borders(c, Med.Sea) ™ In(c, Africa)

Was 2007 the first E/ Nino year after 20012

EINino (2007) A—3y Year (y)” After (y,2001) »
Before(y,2007) A EINIno(y)

T PeTe KR =
N [ ->sz

/?e/aol'\\ou\ [ AW(}_‘)J—l(, ) 'f"lo)«)
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Beyond syntax....... Discourse
parsing.....
» CKY Probabilistic parsing Paper on Fri.

Beyond NLP....... Planning.....

- Li, N., Cushing, W., Kambhampati, S., & Yoon, S. (2012).
Learning probabilistic hierarchical task networks as
probabilistic context-free grammars to capture user
preferences. ACM Transactions on Intelligent Systems
and Technology. (CMU+Arizona State)
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Discovering Discourse Structure:
Computational Tasks

The bank was hamstrung in its efforts to face the challenges of a
changing market by its links to the government, analysts say.

Discourse Segmentation ‘

The bank was to face the challenges of a changing analysts say.
hamstrung in its efforts | | market by its links to the government,
1 . 5 3
Discourse Parsing ‘
ATTRIBUTION
[1-2]

[analysts say.]

ELABORATION

[The bank was hamstrung in its efforts], [to face the challenges of a changing market by its links to the govemment,],
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422 big picture: Where are

we”?

Deterministic

StarAl (statistical relational Al)

Hybrid: Det +Sto
Prob CFG

Prob Relational Models
Stochastic Markov Logics

Logics
First Order Logics

Onftologies
Query

* Full Resolution
« SAT

Belief Nets
Approx. : Gibbs
Markov Chains and HMMs
Forward, Viterbi....
Approx. : Particle Filtering
Undiirected Graphical Models

Markov Networks
Conditional Random Fields

Planning

Markov Decision Processes and
Partially Observable MDP

* Value lteration

« Approx. Inference
Reinforcement Learning

Applications of A/

Representation

Reasoning
Technique




Learning Goals for today's class

YOou can:

« Describe the key steps of CKY probabilistic parsing

 Motivate introduction of structural and lexical
dependencies

« Describe how to deal with these dependencies
within the PCFG framework
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Next class on Mon: paper discussion

(Just accepted!) only sections 1, 3 and 4 are mandator

-CODRA: A Novel Discriminative Framework for
Rhetorical Analysis

Portions of Journal of Computational Linguistics paper ;
Y

Assignment-3 due on Fri
Assignment-4 will be out on the
same day
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