Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 21

Oct, 30, 2015

Slide credit: some slides adapted from Stuart Russell (Berkeley), some from Prof. Carla P. Gomes (Cornell)

Lecture Overview

- Finish Resolution in Propositional logics
- Satisfiability problems
- WalkSAT
- Encoding Example

DEFs.

Full Propositional Logics

Literal: an atom or a negation of an atom $P / q \quad r$
Clause: is a disjunction of literals $p \vee \neg \vee \vee q$
Conjunctive Normal Form (CNF): a conjunction of clauses
INFERENCE: $K B \stackrel{\gtrless}{\rightleftharpoons} \alpha \sim^{\sim} \sim$ tormula $(p) \wedge(q \vee \neg r) \wedge(q q \vee p)$

- Convert all formulas in KB and ${ }^{\wedge}$ の α in CNF
- Apply Resolution Procedure

$$
\begin{aligned}
p \vee q \quad r \vee \neg q & \rightarrow p \vee r \\
& k B \not \subset \alpha
\end{aligned}
$$

Resolution Deduction step

Resolution: inference rule for CNF: sound and complete! *
$(A \vee B \vee C)$
$(\neg A)$

$\therefore(B \vee C)$
$(A \vee B \vee C)$
$(\neg A \vee D \vee E)$
$\therefore(B \vee C \vee D \vee E)$
$(A \vee B)$
$(\neg A \vee B)$
$\therefore(B \vee B) \equiv B$
"If A or B or C is true, but not A , then B or C must be true."
"If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true."

Resolution Algorithm

- The resolution algorithm tries to prove: $K B \models \alpha$
- $K B \wedge \neg \alpha$ is converted in CNF
but this is
equivalent
to prove that $K B \wedge \neg \alpha$
is unsatristiable
- Resolution is applied to each pair of clauses with complementary literals $\neg q \vee r \vee s$
- Resulting clauses are added to the set (if not already there)
- Process continues until one of two things can happen:

$$
\begin{aligned}
& \text { ngs can happen: } \\
& \text { assum ing Resol: is sound }
\end{aligned}
$$

1. Two clauses resolve in the empty/clause. i.e. query is entailed $P \neg P \rightarrow \varnothing>\left.K B\right|_{R} \alpha \Rightarrow K B F \alpha$
2. No new clauses can be added: We find no contradiction, there is a model that satisfies the sentence and hence we cannot entail the query.

Resolution example

$$
K B=(\mathrm{A} \Leftrightarrow(\mathrm{~B} \vee \mathrm{C})) \wedge \neg \mathrm{A}
$$

$$
\alpha=\neg B
$$

False in all worlds

Resolution algorithm

Proof by contradiction, i.e., show $K B \wedge \neg \alpha$ unsatisfiable
function PL-RESOLUTION $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query,
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$
new $-\{ \}$
loop do
for each C_{i}, C_{y} in clauses do
resolvents $\leftarrow \mathrm{PL}-\mathrm{RESOLVE}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true
new \leftarrow new \cup resolvents
if new \subseteq clauses then return false ; no new clauses were created clauses \leftarrow clauses \cup new

Lecture Overview

- Finish Resolution in Propositional logics
- Satisfiability problems
- WalkSAT
- Hardness of SAT
- Encoding Example

Satisfiability problems

Consider a CNF sentence, e.g.,

$$
\begin{aligned}
& (\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B \vee E) \\
& \wedge(E \vee \neg D \vee B) \wedge(B \vee E \vee \neg C)
\end{aligned}
$$

Is there an interpretation in which this sentence is true (i.e., that is a model of this sentence)?

Many combinatorial problems can be reduced to checking the satisfiability of propositional sentences (example later)

How can we solve a SAT problem?

Consider a CNF sentence, e.g.,
$(\neg D \vee \neg B \vee C) \wedge(A \vee C) \wedge(\neg C \vee \neg B \vee E) \wedge(E \vee \neg D$
$\vee B) \wedge(B \vee E \vee \neg C)$
Each clause can be seen as a constraint that reduces the number of interpretations that can be models
$E g(\mathrm{~A} \vee \mathrm{C})$ eliminates interpretations in which $\mathrm{A}=\mathrm{F}$ and $\mathrm{C}=\mathrm{F}$

So SAT is a Constraint Satisfaction Problem: Find a possible world that is satisfying all the constraints (here all the clauses)

WalkSAT algorithm

(Stochastic) Local Search Algorithms can be used for this task!
Evaluation Function: number of unsatisfied clauses
WalkSat: One of the simplest and most effective algorithms:
Start from a randomly generated interpretation

- Pick randomly an unsatisfied clause
- Pick a proposition/atom to flip (randomly 1 or 2)

1. Randomly
2. To minimize \# of unsatisfied clauses

WalkSAT: Example

$$
\begin{aligned}
& \left(\neg_{0}^{\mathrm{D}} \vee \neg \neg_{1} \vee \vee_{0}^{C}\right) \wedge(\underset{0}{A} \vee \mathrm{C}) \wedge(\neg \mathrm{C} \vee \neg \mathrm{~B}) \wedge\left(\underset{0}{\mathrm{E}} \vee \neg \neg_{0}^{\mathrm{D}} \vee \mathrm{~B}\right) \wedge(\underset{0}{\mathrm{~B}} \vee \mathrm{C}) \\
& \text { A BCDE } \\
& 00010 \\
& 01010 \\
& \text { flipe } \begin{array}{c}
\text { I misstst. } 2
\end{array} \\
& \text { assume }^{2} \text { flipB } \rightarrow B=1 \\
& \because B \quad{ }^{\prime} \quad{ }^{2}
\end{aligned}
$$

Pseudocode for WalkSAT

function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move
max-flips, number of flips allowed before giving up
pw \leftarrow a random assignment of true/false to the symbols in clauses for $i=1$ to max-flips do
if pw satisfies clauses then return pw
clause \leftarrow a randomly selected clause from clauses that is false in pw
1 with probability p flip the value in pw of a randomly selected symbol from clause
2 else flip whichever symbol in clause maximizes the number of satisfied clauses return failure
pw = possible world / interpretation

The WalkSAT algorithm

If it returns failure after it tries max-flips times, what can we say?
A. The sentence is unsatisfiable
B. Nothing
C. The sentence is satisfiable

Typically most useful when we expect a solution to exist

WalkSAT: Example

$$
\begin{aligned}
& (\neg \mathrm{D} \vee \neg \mathrm{~B} \vee \mathrm{C}) \wedge(\mathrm{A} \vee \mathrm{C}) \wedge(\neg \mathrm{C} \vee \neg \mathrm{~B}) \wedge(\mathrm{E} \vee \neg \mathrm{D} \vee \mathrm{~B}) \wedge(\mathrm{B} \vee \mathrm{C}) \\
& \vee \\
& \vee
\end{aligned}
$$

Hard satisfiability problems

Consider random 3-CNF sentences. e.g.,
$(\neg D \vee \neg B \vee C) \wedge(B \vee \neg A \vee \neg C) \wedge(\neg C \vee \neg B \vee E) \wedge(E$ $\vee \neg D \vee B) \wedge(B \vee E \vee \neg C)$
$m=$ number of clauses (5)
$n=$ number of symbols (5)

- Under constrained problems:
\checkmark Relatively few clauses constraining the variables
\checkmark Tend to be easy
E.g. For the above problem16 of 32 possible assignments are solutions - (so 2 random guesses will work on average)

Hard satisfiability problems

What makes a problem hard?

- Increase the number of clauses while keeping the number of symbols fixed
- Problem is more constrained, fewer solutions
- You can investigate this experimentally....

P(satisfiable) for random 3-CNF sentences, $\mathrm{n}=50$

- Hard problems seem to cluster near $m / n=4.3$ (critical point)

Lecture Overview

- Finish Resolution in Propositional logics
- Satisfiability problems
- WalkSAT
- Encoding Example

Encoding the Latin Square Problem in Propositional Logic

In combinatorics and in experimental design, a Latin square is an $n \times n$ array filled with n different symbols, each occurring exactly once in each row and exactly once in each column. Here is an example:

A	B	C
C	A	B
B	C	A

Here is another one:

Encoding Latin Square in Propositional Logic: Propositions

Variables must be binary! (They must be propositions)
Each variables represents a color assigned to a cell. Assume colors are encoded as integers

$$
x_{i j k} \in\{0,1\}
$$

Assuming colors are encoded as follows (black, 1) (red, 2) (blue, 3) (green, 4) (purple, 5)
$x_{233}={ }^{\circ}$ True or false, ie. 0 or 1 with respect to the interpretation represented by the picture?

How many vars/propositions overall?

$$
13
$$

Encoding Latin Square in Propositional Logic: Clauses

- Some color must be assigned to each cell (clause of length n); iolicker.

$$
\forall_{i j}\left(x_{i j 1} \vee x_{i j 2} \cdots x_{i j n}\right) \quad \forall_{i k}\left(x_{i 1 k} \vee x_{i 2 k} \cdots x_{i n k}\right)
$$

$$
i \downarrow \square \quad k=c_{0} \rho_{\alpha}
$$

- No color is repeated in the same row (sets of negative binary clauses);

$$
\forall_{i k}\left(\neg x_{i 1 k} \vee \neg x_{i 2 k}\right) \wedge\left(\neg x_{i 1 k} \vee \neg x_{i 3 k}\right) \ldots\left(\neg x_{i 1 k} \vee \neg x_{i n k}\right) \cdots\left(\neg x_{i n k} \vee \neg x_{i(n-1) k}\right)
$$

Encoding Latin Square in Propositional Logic: Clauses

- Some color must be assigned to each cell (clause of length n); iiclicker.
- No color is repeated in the same row (sets of negative binary clauses);

Encoding Latin Square Problems in Propositional Logic: FULL MODEL

n^{3}

Variables: $x_{i j k}$ cell,$- j$ hat $k ; i, j, k=1,2, \ldots, \ldots . x_{i j k} \subset\{0,1\}$
Each variables represents a color assigned to a cell.
Clauses: $O\left(n^{4}\right)$

- Some color must be assigned to each cell (clause of length n);

$$
\forall_{i j}\left(x_{i j 1} \vee x_{i j 2} \ldots x_{i j n}\right)
$$

- No color is repeated in the same row (sets of negative binary clauses);

$$
\begin{aligned}
& \forall{ }_{i k}\left(\neg x_{i 1 k} \vee \neg x_{i 2 k}\right) \wedge\left(\neg x_{i 1 k} \vee \neg x_{i 3 k}\right) \ldots\left(\neg x_{i 1 k} \vee \neg x_{i n k}\right) \\
& \cdots\left(\neg x_{i(n-1) k} \vee \neg x_{i n k}\right)
\end{aligned}
$$

- No color is repeated in the same column (sets of negative binary clauses);

$$
\begin{aligned}
& \left.\forall{ }_{j k}\left(\neg x_{1 j k} \vee \neg x_{2 j k}\right) \wedge\left(\neg x_{1 j k} \vee \neg x_{3 j k}\right) \ldots\left(\neg x_{1 j k} \vee \neg x_{n j k}\right)\right\} \\
& \cdots\left(\neg x_{n j k} \vee \neg x_{(n-1) j k}\right) \quad \text { some os for rows }
\end{aligned}
$$

Logics in AI: Similar slide to the one for planning

Propositional Definite Clause Logics

Semantics and Proof
Theory
BU Sound
TD complete

Relationships between different Logics

Learning Goals for today's class

You can:

- Specify, Trace and Debug the resolution proof procedure for propositional logics
- Specify, Trace and Debug WalkSat
- Explain differences between Proposition Logic and First Order Logic

Announcements

Midterm

- Avg 72 Max 103 Min 13
- If score below 70 need to very seriously revise all the material covered so far
- You can pick up a printout of the solutions along with your midterm

Next class Mon

- First Order Logic
- Extensions of FOL
- Assignment-3 will be posted next week!

