Salesforce Info Session
Mon. Oct 26
6-7 pm
DMP 310

Dynastream Info Session
Thurs., Oct 29
5:30-6:30 pm
DMP 110
Visier Info Session
Tues., Nov 3
12-1:30 pm
Kaiser 2020/2030

E-Portfolio Competition Info \& Training Session

Wed., Nov 4

5:45-7:15 pm
DMP 310

Rakuten Info Session
Thurs., Nov 5
5:30-6:30 pm
DMP 110

Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 20

Oct, 28, 2015

Slide credit: some slides adapted from Stuart Russell (Berkeley), some from Padhraic Smyth (UCIrvine)

PhD thesis I was reviewing some months ago... University of Alberta EXTRACTING INFORMATION NETWORKS FROM TEXT

We model predicate detection as a sequence labeling problem - We adopt the BIO encoding, a widely-used technique in NLP.
Our method, called Meta-CRF, is based on Conditional Random Fields (CRF) .
CRF is a graphical model that estimates a conditional probability distribution, denoted $p(y j x)$, over label sequence y given the token sequence x.

422 big picture: Where are we?

Stochastic Markov Logics

Planning

Logics in AI: Similar slide to the one for planning

CPSC 322, Lecture 19

Relationships between different Logics

Lecture Overview

- Basics Recap: Interpretation / Model /..
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation I assigns a truth value to each atom.
Definition (truth values of statements cont'): A knowledge base $K B$ is true in I if and only if every clause in $K B$ is true in I.

PDC Semantics: Knowledge Base (KB)

- A knowledge base KB is true in I if and only if every clause in KB is true in I.

	p	q	r	s
I_{1}	true	true	false	false

irslicker.

Which of the three KB below is True in I_{1} ?

PDC Semantics: Knowledge Base (KB)

- A knowledge base KB is true in I if and only if every clause in KB is true in I.

	p	q	r	s
I_{1}	true	true	false	false

$K B_{3}$

```
p
q\leftarrowr^s
```

Which of the three KB above is True in I_{1} ? $K B_{3}$

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation I assigns a truth value to each atom.
Definition (truth values of statements cont'): A knowledge base $K B$ is true in I if and only if every clause in $K B$ is true in I.

Definition (model)

A model of a set of clauses (a KB) is an interpretation in which all the clauses are true.

Example: Models

$$
\begin{aligned}
& K B=\left\{\begin{array}{ccc}
p \leftarrow q . \\
q .
\end{array},\right. \\
& \mathrm{I}_{2} \text { false false false false } \\
& I_{3} \text { true true false false } M \\
& \text { models? }
\end{aligned}
$$

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation I assigns a truth value to each atom.
Definition (truth values of statements cont'): A knowledge base $K B$ is true in I if and only if every clause in $K B$ is true in I.

Definition (model)

A model of a set of clauses (a KB) is an interpretation in which all the clauses are true.

Definition (logical consequence)

If $K B$ is a set of clauses and G is a conjunction of atoms, G is a logical consequence of $K B$, written $K B \vDash G$, if G is true in every model of $K B$.
irclicker.

Is it true that if
$M(K B)$ is the set of all models of $K B$ $M(\alpha)$ is the set of all models of α
Then $K B \models \alpha$ if and only if $M(K B) \subseteq M(\alpha)$ y(KB)

C. It depends

Basic definitions from 322 (Proof Theory)

Definition (soundness)
A proof procedure is sound if $K B \vdash G$ implies $K B \vDash G$.

Definition (completeness)
A proof procedure is complete if $K B \vDash G$ implies $K B \vdash G$.

Lecture Overview

- Basics Recap: Interpretation / Model /
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Relationships between different Logics

Propositional logic: Syntax

Atomic sentences $=$ single proposition symbols

- E.g., P, Q, R
- Special cases: True = always true, False = always false

Complex sentences:

- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_{1} and S_{2} are sentences, $S_{1} \wedge S_{2}$ is a sentence (conjunction)
- If S_{1} and S_{2} are sentences, $S_{1} \vee S_{2}$ is a sentence (disjunction)
- If S_{1} and S_{2} are sentences, $S_{1} \Rightarrow S_{2}$ is a sentence (implication)
- If S_{1} and S_{2} are sentences, $S_{1} \Leftrightarrow S_{2}$ is a sentence (biconditional)

Propositional logic: Semantics

Each interpretation specifies true or false for each proposition symbol E.g.

p	q	r
false	true	false

Rules for evaluating truth with respect to an interpretation I :
$\neg S \quad$ is true iff $\quad S$ is false
$S_{1} \wedge S_{2}$ is true iff $\quad S_{1}$ is true and S_{2} is true
$S_{1} \vee S_{2}$ is true iff $\quad S_{1}$ is true or $\quad S_{2}$ is true

$S_{1} \Rightarrow S_{2}$	is true iff	S_{1} is false or	S_{2} is true
i.e.,	is false iff	S_{1} is true and	S_{2} is false

$S_{1} \Leftrightarrow S_{2} \quad$ is true iff
$\mathrm{S}_{1} \Rightarrow \mathrm{~S}_{2}$ is true and $\mathrm{S}_{2} \Rightarrow \mathrm{~S}_{1}$ is true
Simple recursive process evaluates an arbitrary sentence, e.g., $(\neg \mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})) \Leftrightarrow \neg \mathrm{p}=(\neg F \wedge(T \vee F)) \Leftrightarrow \neg F$ $(T \wedge T) \Leftrightarrow T$

Logical equivalence

Two sentences are logically equivalent iff true in same interpretations $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha \quad \begin{gathered}\text { They hare the same } \\ \text { models }\end{gathered}$

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional eliminatior } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \quad \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Can be used to rewrite formulas....
$\left.\begin{array}{l}(p \Rightarrow 7(q \wedge r)) \\ \Rightarrow \neg p \vee \neg(q \wedge r)\end{array}\right) \Rightarrow 7 p \vee \neg q \vee \neg r$

$$
\begin{aligned}
& (\alpha \wedge \beta) \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
& (\alpha \vee \beta) \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
& ((\alpha \wedge \beta) \wedge \gamma) \equiv(\alpha \wedge(\beta \wedge \gamma)) \text { associativity of } \wedge \\
& ((\alpha \vee \beta) \vee \gamma) \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee(p \Rightarrow 7(q \\
& \neg(\neg \alpha) \equiv \alpha \text { double-negation elimination } \\
& \text { * }(\alpha \Rightarrow \beta) \equiv(\neg \beta \Rightarrow \neg \alpha) \text { contraposition } \\
& \text { (四 }(\alpha \Rightarrow \beta) \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
& (\alpha \Leftrightarrow \beta) \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \text { biconditional elimination } \\
& \neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
& \neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
& (\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
& (\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Can be used to rewrite formulas....

$(q \wedge r) \Rightarrow 7 p$

Validity and satisfiability

A sentence is valid if it is true in all interpretations

$$
\text { e.g., True, } \quad A \vee \neg A, \quad A \Rightarrow A, \quad(A \wedge(A \Rightarrow B)) \Rightarrow B
$$

Validity is connected to inference via the Deduction Theorem:

$$
K B \models \alpha \text { if and only if }(K B \Rightarrow \alpha) \text { is valid }
$$

A sentence is satisfiable if it is true in some interpretation

$$
\text { e.g., } A \vee B \text {, }
$$

A sentence is unsatisfiable if it is true in no interpretations

$$
\text { e.g., } A \wedge \neg A
$$

Satisfiability is connected to inference via the following:

$$
K B \models \alpha \text { if and only if }(K B \wedge \neg \alpha) \text { is unsatisfiable }
$$

i.e., prove α by reductio ad absurdum

Validity and Satisfiability
ioclicker.
(α is valid iff 1α unsatistiable)
$\langle\alpha$ is satistiable iff $\tau \alpha$ is valid>
The statements bbove ore:
A: All tolse
B: Some true Sometalse
C: All True

Validity and Satisfiability

$\left\langle\alpha\right.$ is satisfiable of $\frac{7 \alpha}{}$ is/valid \rangle If
The statements hove re:
A: All false
B: Some true Some false
C: All True

Lecture Overview

- Basics Recap: Interpretation / Model /
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Proof by resolution

Key ideas

$$
\begin{aligned}
& \text { proot } \\
& \frac{K B \mid=\alpha}{\text { equivalent to }: K B \wedge \neg \alpha \text { unsatifiable }}
\end{aligned}
$$

- Simple Representation for Conjunctive Normal
- Simple Rule of Derivation
Resolution

Conjunctive Normal Form (CNF)

Rewrite $K B \wedge \neg \alpha$ into conjunction of disjunctions

- Any KB can be converted into CNF!

Example: Conversion to CNF

$A \Leftrightarrow(B \vee C)$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$. $(A \Rightarrow(B \vee C)) \wedge((B \vee C) \Rightarrow A)$
2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$. $(\neg A \vee B \vee C) \wedge(\neg(B \vee C) \vee A)$
3. Using de Morgan's rule replace $\neg(\alpha \vee \beta)$ with $(\neg \alpha \wedge \neg \beta)$: $(\neg A \vee B \vee C) \wedge((\neg B \wedge \neg C) \vee A)$
4. Apply distributive law $(\vee$ over $\wedge)$ and flatten:
$(\neg A \vee B \vee C) \wedge(\neg B \vee A) \wedge(\neg C \vee A)$

Example: Conversion to CNF

$A \Leftrightarrow(B \vee C)$
5. KB is the conjunction of all of its sentences (all are true), so write each clause (disjunct) as a sentence in KB:
$(\neg A \vee B \vee C)$
$(\rightarrow B \vee A)$
$(\rightarrow C \vee A)$

Resolution Deduction step

Resolution: inference rule for CNF: sound and complete! *
$(A \vee B \vee C)$
$(\neg A)$

$\therefore(B \vee C)$
$(A \vee B \vee C)$
$(\neg A \vee D \vee E)$
$\therefore(B \vee C \vee D \vee E)$
$(A \vee B)$
$(\neg A \vee B)$
$\therefore(B \vee B) \equiv B$
"If A or B or C is true, but not A , then B or C must be true."
"If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true."

Learning Goals for today's class

You can:

- Describe relationships between different logics
- Apply the definitions of Interpretation, model, logical entailment, soundness and completeness
- Define and apply satisfiability and validity
- Convert any formula to CNF
- Justify and apply the resolution step

PhD thesis I was reviewing some months ago... University of Alberta EXTRACTING INFORMATION NETWORKS FROM TEXT

We model predicate detection as a sequence labeling problem - We adopt the BIO encoding, a widely-used technique in NLP.
Our method, called Meta-CRF, is based on Conditional Random Fields (CRF) .
CRF is a graphical model that estimates a conditional probability distribution, denoted $p(y j x)$, over label sequence y given the token sequence x.

Next class Fri

- Finish Resolution
- Another proof method for Prop. Logic

Model checking - Searching through truth assignments. Walksat.

- First Order Logics

Ignore from this slide forward

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the $K B$.

Try it Yourselves

- 7.9 page 238: (Adapted from Barwise and Etchemendy (1993).) If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.
- Derive the KB in normal form.

Exposes useful constraints

- "You can't learn what you can't represent." --- G. Sussman
- In logic: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

Prove that the unicorn is both magical and horned.

- A good representation makes this problem easy:

$$
(\neg Y \vee \neg R)^{\wedge}(Y \vee R)^{\wedge}(Y \vee M)^{\wedge}(R \vee H)^{\wedge}(\neg M \vee H)^{\wedge}(\neg H \vee G)
$$

Resolution

Conjunctive Normal Form (CNF-universal)
conjunction of disjunctions of literals
clauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Resolution inference rule (for CNF): complete for propositional logic

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}
$$

where ℓ_{i} and m_{j} are complementary literals. E.g.,

$$
\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}
$$

Resolution is sound and complete for propositional logic

Conversion to CNF

$B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)$
3. Move \neg inwards using de Morgan's rules and double-negation:
$\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)$
4. Apply distributivity law (\vee over \wedge) and flatten: $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic

Propositional logic lacks expressive power

Logical equivalence

To manipulate logical sentences we need some rewrite rules.
Two sentences are logically equivalent iff they are true in same models: $\alpha \equiv \beta$ iff $\alpha=\beta$ and β F α

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \quad \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

Validity and satisfiability

A sentence is valid if it is true in all models,

$$
\stackrel{\text { e.g., True, }}{\Rightarrow B} \mathrm{~B}) \stackrel{B}{\Rightarrow}
$$

(tautologies)
Validity is connected to inference via the Deduction Theorem:
$K B \equiv \alpha$ if and only if $(K B \Rightarrow \alpha)$ is valid
A sentence is satisfiable if it is true in some model

$$
\text { e.g., } A \vee B, \quad C
$$

(determining satisfiability of sentences is NPcomplete)
A sentence is unsatisfiable if it is false in all

Proof methods

Proof methods divide into (roughly) two kinds:
Application of inference rules:
Legitimate (sound) generation of new sentences from old.
\checkmark Resolution
\checkmark Forward \& Backward chaining

Model checking
Searching through truth assignments.
\checkmark Improved backtracking: Davis--Putnam-Logemann-Loveland (DPLL) \checkmark Heuristic search in model space: Walksat.

Normal Form

\square

We first rewrite $K B \wedge \neg \alpha$ into conjunctive normal form (CNF).
literals
A "conjunction of disjunctions"

- Any KB can be converted into CNF
- k-CNF: exactly k literals per clause

Example: Conversion to CNF

$B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$

1. Eliminate \Leftrightarrow, replacing $a \Leftrightarrow \beta$ with $(a \Rightarrow \beta) \wedge(\beta \Rightarrow a)$. $\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)$
2. Eliminate \Rightarrow, replacing $\mathrm{a} \Rightarrow \beta$ with $\neg \mathrm{av} \beta$. $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)$
3. Move \neg inwards using de Morgan's rules and double-negation: $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)$
4. Apply distributive law (\wedge over \vee) and flatten: $\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)$

Resolution Inference Rule for CNF

$(A \vee B \vee C)$
$(\neg A)$
$\therefore(B \vee C)$
$(A \vee B \vee C)$
$(\neg A \vee D \vee E)$
$\therefore(B \vee C \vee D \vee E)$
$(A \vee B)$
$(\neg A \vee B)$
$\therefore(B \vee B) \equiv B$

Resolution Algorithm

- The resolution algorithm tries to prove: $K B \mid=\alpha$ equivalent to

$$
K B \wedge \neg \alpha \text { unsatisfiable }
$$

- Generate all new sentences from KB and the query.
- One of two things can happen:

1. We find $P \wedge \neg P$ which is unsatisfiable,
i.e. we can entail the query.
2. We find no contradiction: there is a model that satisfies the Sentence (non-trivial) and hence we cannot entail the query.

$$
K B \wedge \neg \alpha
$$

Resolution example

- $K B=\left(\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)\right) \wedge \neg \mathrm{B}_{1,1}$
- $\mathrm{a}=\neg \mathrm{P}_{1,2}$

False in all worlds

Horn Clauses

- Resolution in general can be exponential in space and time.
- If we can reduce all clauses to "Horn clauses" resolution is linear in space and time

A clause with at most 1 positive literal.
e.g. $A \vee \neg B \vee \neg C$

- Every Horn clause can be rewritten as an implication with a conjunction of positive literals in the premises and a single positive literal as a conclusion.
e.g. $B \wedge C \Rightarrow A$
- 1 positive literal: definite clause
- 0 positive literals: Fact or integrity constraint:
e.g. $(\neg A \vee \neg B) \equiv(A \wedge B \Rightarrow$ False $)$

Normal Form

We want to proket: α equivalent to : $K B \wedge \neg \alpha$ unsatifiable

We first rewften α

into conjunctive normal form (C

A "conjunction of disjumetiotiserals
$(\underbrace{\mathrm{A} \vee} \neg \mathrm{B}) \wedge(\underbrace{\mathrm{B} \vee} \neg \mathrm{C} \vee \neg \mathrm{D})$
Clause Clause

- Any KB can be converted into CNF
- k-CNF: exactly k literabs?aercolause

Example: Conversion to CNF

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributive law (\wedge over \vee) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Resolution Inference Rule for CNF

$(A \vee B \vee C)$
$(\neg A)$
$\therefore(B \vee C)$
$(A \vee B \vee C)$
$(\neg A \vee D \vee E)$
$\therefore(B \vee C \vee D \vee E)$
$(A \vee B)$
$(\neg A \vee B)$
$-------$
$\therefore(B \vee B) \equiv B$
"If A or B or C is true, but not A , then B or C must be true."
"If A is false then B or C must be true, or if A is true then D or E must be true, hence since A is either true or false, B or C or D or E must be true." Simplification

Resolution Algorithm

- The resolution algorithm tries to prove: $K B \mid=\alpha$ equivalent to $K B \wedge \neg \alpha$ unsatisfiable
- Generate all new sentences from KB and the query.
- One of two things can happen:

1. We find $P \wedge \neg P$ which is unsatisfiable, i.e. we can entail the query.
2. We find no contradiction: there is a model that satisfies the Sentence (non-trivial) and hence we cannot entail the query. $K B \wedge \neg \alpha$

Resolution example

False in all worlds

Horn Clauses

- Resolution in general can be exponential in space and time.
- If we can reduce all clauses to "Horn clauses" resolution is li A clause with at most 1 positive literal. e.g.
- Every Horn clause can be rewritten as an implication witl a confjunĉtion of positive literals in the premises and a sin positive literal as a conclusion.
e.g.

$$
(\neg A \vee \neg B) \equiv(A \wedge B \Rightarrow F a / s e)
$$

- 1 positive literal: definite clause

CPSC 322, Lecture 19

