UBC Department of Computer Science Undergraduate Events More details @ <u>https://my.cs.ubc.ca/students/development/events</u>

Salesforce Info Session

Mon., Oct 26 6 – 7 pm DMP 310

Dynastream Info Session

Thurs., Oct 29 5:30 – 6:30 pm DMP 110

Visier Info Session

Tues., Nov 3 12 – 1:30 pm Kaiser 2020/2030 E-Portfolio Competition Info & Training Session

Wed., Nov 4 5:45 – 7:15 pm DMP 310

Rakuten Info Session

Thurs., Nov 5 5:30 – 6:30 pm DMP 110

Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 20

Oct, 28, 2015

Slide credit: some slides adapted from Stuart Russell (Berkeley), some from Padhraic Smyth (UCIrvine)

CPSC 322, Lecture 19

PhD thesis I was reviewing some months ago... University of Alberta EXTRACTING INFORMATION NETWORKS FROM TEXT

We model *predicate detection* as a sequence labeling problem — We adopt the BIO encoding, a widely-used technique in NLP.

Our method, called Meta-CRF, is based on Conditional Random Fields (CRF).

CRF is a graphical model that estimates a conditional probability distribution, denoted p(yjx), over label sequence y given the token sequence x.

Logics in AI: Similar slide to the one for planning

Relationships between different Logics (better with colors) First Order Logic Datalog $p(X) \leftarrow q(X) \wedge r(X,Y)$ $\forall X \exists Y p(X, Y) \Leftrightarrow \neg q(Y)$ $r(X,Y) \leftarrow S(Y)$ $P(\partial_1,\partial_2)$ $S(a_1), q(a_2)$ $-q(\partial_5)$ PDCL Propositional Logic PESAF $7(p \vee q) \longrightarrow (r \wedge s \wedge f)_{f}$ rESNgAP CPSC 322, Lecture 19

Lecture Overview

- Basics Recap: Interpretation / Model /...
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation *I* assigns a truth value to each atom.

Definition (truth values of statements cont'): A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

PDC Semantics: Knowledge Base (KB)

• A knowledge base KB is true in I if and only if every clause in KB is true in I.

	р	q	r	S	
I ₁	true	true	false	false	i⊷licker.

Which of the three KB below is True in I_1 ?

PDC Semantics: Knowledge Base (KB)

• A knowledge base KB is true in I if and only if every clause in KB is true in I.

Which of the three KB above is True in I_1 ? **KB**₃

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation *I* assigns a truth value to each atom.

Definition (truth values of statements cont'): A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

Definition (model) A model of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

Example: Models										
				$\int p \leftarrow q.$						
$KB = \begin{cases} q. \end{cases}$										
	р	q	r	s $r \leftarrow s$.						
\mathcal{A}^{I_1}	true	true	true	true M	Which interpretations are					
I ₂	false	false	false	false $ imes$	models?					
I_3	true	true	false	false M						
I_4	true	true	true	false M						
I_5	true	true	false	true 🗙						

Basic definitions from 322 (Semantics)

Definition (interpretation)

An interpretation *I* assigns a truth value to each atom.

Definition (truth values of statements cont'): A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.

Definition (model)

A model of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

Definition (logical consequence)

If *KB* is a set of clauses and *G* is a conjunction of atoms, *G* is a logical consequence of *KB*, written $KB \models G$, if *G* is *true* in every model of *KB*.

Is it true that if

M(KB) is the set of all models of KB $M(\alpha)$ is the set of all models of α $= \alpha$ if and only if $M(KB) \subseteq M(\alpha)$ Then KB of KB MCa yes R. nD C. It depends All interpretations

Basic definitions from 322 (Proof Theory)

Definition (soundness)

A proof procedure is sound if $KB \vdash G$ implies $KB \models G$.

Definition (completeness)

A proof procedure is complete if $KB \models G$ implies $KB \vdash G$.

Lecture Overview

- Basics Recap: Interpretation / Model /
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Relationships between different Logics (better with colors) First Order Logic Datalog $p(X) \leftarrow q(X) \wedge r(X,Y)$ $\forall X \exists Y p(X, Y) \Leftrightarrow \neg q(Y)$ $r(X,Y) \leftarrow S(Y)$ $P(\partial_1,\partial_2)$ $S(a_1), q(a_2)$ $-q(\partial_5)$ PDCL Propositional Logic PESAF $7(p \vee q) \longrightarrow (r \wedge s \wedge f)_{f}$ rESNgAP CPSC 322, Lecture 19

Propositional logic: Syntax

Atomic sentences = single proposition symbols

- E.g., P, Q, R
- Special cases: True = always true, False = always false

Complex sentences:

- If S is a sentence, ¬S is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

CPSC 322, Lecture 19

Propositional logic: Semantics

Each interpretation specifies true or false for each proposition symbol E.g. р q r false true false Rules for evaluating truth with respect to an interpretation I: \neg S is true iff S is false $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true S_1 is true and S_2 is false i.e., is false iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true $S_1 \Leftrightarrow S_2$ is true iff

Simple recursive process evaluates an arbitrary sentence, e.g., $(\neg p \land (q \lor r)) \Leftrightarrow \neg p = (\neg \vdash \land (\top \lor \vdash)) \Leftrightarrow \neg \vdash (\top \land \top) \Leftrightarrow \top \vdash (\top \land \top) \Leftrightarrow \top$ $(\top \land \top) \Leftrightarrow \top \qquad CPSC 322, Lecture 19$

Logical equivalence

Two sentences are logically equivalent iff true in same interpretations they have the same models $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$ $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg\alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

$$\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Rightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$$

Can be used to rewrite formulas....

 $(p \Rightarrow 7(q \Lambda r))$ $\Rightarrow 7 p \vee 7(q \Lambda r)$

CPSC 322, Lecture 19

Nr V PF V 915

$$\begin{array}{l} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \wedge (\rho \Rightarrow 7 (q \wedge \gamma)) \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \quad \neg \rho \vee \neg (q \wedge \gamma) \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ \neg (\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \end{array}$$

Can be used to rewrite formulas.... $(P \Rightarrow \neg (\circ \land r))$

 $(q \wedge r) \Rightarrow \gamma P$

7(915)V7P 95075079

CPSC 322, Lecture 19

Validity and satisfiability

A sentence is valid if it is true in all interpretations e.g., True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some interpretation e.g., $A \lor B$, C

A sentence is unsatisfiable if it is true in **no** interpretations e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable i.e., prove α by *reductio ad absurdum*

Validity and Satisfiability

CPSC 322, Lecture 19

Validity and Satisfiability trueinall iclicker. (a is valid iff id unsatisfiable) t The statements shove are: A: All talse B: Some true Some false (: All true

CPSC 322, Lecture 19

Lecture Overview

- Basics Recap: Interpretation / Model /
- Propositional Logics
- Satisfiability, Validity
- Resolution in Propositional logics

Proof by resolution

 $\begin{array}{c} F^{r \circ \bullet} \\ KB \models \alpha \end{array} \xrightarrow{h \circ \lor} \\ \hline equivalent \ to : KB \land \neg \alpha \ unsatifiable \end{array}$ Key ideas

Simple Representation for Conjunctive Normal

Simple Rule of Derivation

Resolution

Conjunctive Normal Form (CNF)

Rewrite $KB \land \neg \alpha$ into conjunction of disjunctions

• Any KB can be converted into CNF !

Example: Conversion to CNF

- $\mathsf{A} \iff (\mathsf{B} \lor \mathsf{C})$
- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. (A \Rightarrow (B \lor C)) \land ((B \lor C) \Rightarrow A)
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. ($\neg A \lor B \lor C$) \land ($\neg (B \lor C) \lor A$)
- 3. Using de Morgan's rule replace $\neg(\alpha \lor \beta)$ with $(\neg \alpha \land \neg \beta)$: $(\neg A \lor B \lor C) \land ((\neg B \land \neg C) \lor A)$
- 4. Apply distributive law (\lor over \land) and flatten: ($\neg A \lor B \lor C$) \land ($\neg B \lor A$) \land ($\neg C \lor A$)

Example: Conversion to CNF

- $\mathsf{A} \ \Leftrightarrow (\mathsf{B} \lor \mathsf{C})$
- 5. KB is the conjunction of all of its sentences (all are true), so write each clause (disjunct) as a sentence in KB:

$$(\neg A \lor B \lor C)$$

 $(\neg B \lor A)$
 $(\neg C \lor A)$

. . .

Learning Goals for today's class

You can:

- Describe relationships between different logics
- Apply the definitions of Interpretation, model, logical entailment, soundness and completeness
- Define and apply satisfiability and validity
- Convert any formula to CNF
- Justify and apply the resolution step

PhD thesis I was reviewing some months ago... University of Alberta EXTRACTING INFORMATION NETWORKS FROM TEXT

We model *predicate detection* as a sequence labeling problem — We adopt the BIO encoding, a widely-used technique in NLP.

Our method, called Meta-CRF, is based on Conditional Random Fields (CRF).

CRF is a graphical model that estimates a conditional probability distribution, denoted p(yjx), over label sequence y given the token sequence x.

Next class Fri

- Finish Resolution
- Another proof method for Prop. Logic Model checking - Searching through truth assignments. Walksat.

• First Order Logics

Ignore from this slide forward

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the KB.

Try it Yourselves

 7.9 page 238: (Adapted from Barwise and Etchemendy (1993).) If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

- Derive the KB in normal form.
- Prove: Horned, ^{CPSC 322, Lecture 19} Prove: Magical.

Exposes useful constraints

- "You can't learn what you can't represent." --- G. Sussman
- **In logic:** If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

Prove that the unicorn is both magical and horned.

• A good representation makes this problem easy:

 $(\neg Y \lor \neg R)^{(Y \lor R)^{(Y \lor M)^{(R \lor H)^{(\neg M \lor H)^{(\neg H \lor G)}}}$

Resolution

Conjunctive Normal Form (CNF—universal) conjunction of disjunctions of literals clauses E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

Resolution inference rule (for CNF): complete for propositional logic

 $\frac{\ell_1 \vee \cdots \vee \ell_k, \qquad m_1 \vee \cdots \vee m_n}{\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n}$

where ℓ_i and m_j are complementary literals. E.g.,

$$\frac{P_{1,3} \vee P_{2,2}, \qquad \neg P_{2,2}}{P_{1,3}}$$

Resolution is sound and complete for propositional logic

Conversion to CNF

 $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$

1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.

 $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$

2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

3. Move – inwards using de Morgan's rules and double-negation:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$

4. Apply distributivity law (\lor over \land) and flatten:

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Resolution example

 $KB = (B_{1,1} \ \Leftrightarrow \ (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \ \alpha = \neg P_{1,2}$

Forward, backward chaining are linear-time, complete for Horn clauses Resolution is complete for propositional logic

Propositional logic lacks expressive power

Logical equivalence

To manipulate logical sentences we need some rewrite rules.

Two sentences are logically equivalent iff they are true in same models: $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

CPSC 322, Lecture 19

Validity and satisfiability

A sentence is valid if it is true in all models,

e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$ (tautologies)

Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if ($KB \Rightarrow \alpha$) is valid

A sentence is satisfiable if it is true in some model

e.g., $A \lor B$, C (determining satisfiability of sentences is NP-complete)

A sentence is unsatisfiable if it is false in all

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules:

Legitimate (sound) generation of new sentences from old.

- ✓ Resolution
- ✓ Forward & Backward chaining

Model checking

Searching through truth assignments.

✓ Improved backtracking: Davis--Putnam-Logemann-Loveland (DPLL)

✓ Heuristic search in model space: Walksat.

Normal Form

We want to prove:

We first rewrite $KB \wedge \neg \alpha$ into conjunctive normal form (CNF).

- Any KB can be converted into CNF
- k-CNF: exactly k literals per clause

Example: Conversion to CNF

 $\mathsf{B}_{1,1} \ \Leftrightarrow (\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1})$

- 2. Eliminate \Rightarrow , replacing $a \Rightarrow \beta$ with $\neg a \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3. Move \neg inwards using de Morgan's rules and double-negation: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- 4. Apply distributive law (\land over \lor) and flatten: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Resolution Inference Rule for CNF

- The resolution algorithm tries to prove: $KB \models \alpha$ equivalent to $KB \land \neg \alpha$ unsatisfiable
- Generate all new sentences from KB and the query.
- One of two things can happen:
- 1. We find $P \land \neg P$ which is unsatisfiable, i.e. we can entail the query.
- 2. We find no contradiction: there is a model that satisfies the Sentence (non-trivial) and hence we cannot entail the query.

 $KB \land \neg \alpha$

Resolution example

•
$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$$

Horn Clauses

- Resolution in general can be exponential in space and time.
- If we can reduce all clauses to "Horn clauses" resolution is linear in space and time

• Every Horn clause can be rewritten as an implication with a conjunction of positive literals in the premises and a single positive literal as a conclusion.

e.g. $B \wedge C \Rightarrow A$

- 1 positive literal: definite clause
- 0 positive literals: Fact or integrity constraint: e.g. $(\neg A \lor \neg B) \equiv (A \land B \Rightarrow False)$

Normal Form

We want to $pr d = \alpha$ equivalent to : KB $\land \neg \alpha$ unsatifiable

We first rewrite \neg^{α} into conjunctive normal form (C

A "conjunction of disjunctions" $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

Clause Clause

- Any KB can be converted into CNF
- k-CNF: exactly k literalsaper-chause

Example: Conversion to CNF

 $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3. Move \neg inwards using de Morgan's rules and double-negation: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- 4. Apply distributive law (\land over \lor) and flatten: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Resolution Inference Rule for CNF

 $(A \lor B \lor C)$ $(\neg A)$ $\therefore (B \lor C)$ $(A \lor B \lor C)$ $(\neg A \lor D \lor E)$ $\therefore (B \lor C \lor D \lor E)$ $(A \lor B)$ $(\neg A \lor B)$ $\therefore (B \lor B) \equiv B$

"If A or B or C is true, but not A, then B or C must be true."

"If A is false then B or C must be true,

or if A is true then D or E must be true, hence since A is either true or false, B or C

or D or E must be true." Simplification

Resolution Algorithm

- The resolution algorithm tries to prove: $\frac{KB}{KB} = \alpha$ equivalent to $KB \wedge \neg \alpha$ unsatisfiable
- Generate all new sentences from KB and the query.
- One of two things can happen:
- 1. We find $P \land \neg P$ which is unsatisfiable, i.e. we can entail the query.
- 2. We find no contradiction: there is a model that satisfies the Sentence (non-trivial) and hence we cannot entail the query. $KB \land \neg \alpha$

Resolution example

Horn Clauses

- Resolution in general can be exponential in space and time.
- If we can reduce all clauses to "Horn clauses" resolution is li A clause with at most 1 positive literal. e.g.
 - Every Horn clause can be rewritten as an implication with a conjunction of positive literals in the premises and a sin positive literal as a conclusion.

e.g.

 $(\neg A \lor \neg B) \equiv (A \land B \Longrightarrow False)$

• 1 positive literal: definite clause CPSC 322, Lecture 19