
CPSC 422, Lecture 8 Slide 1

Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 8

Sep, 25, 2015

CPSC 422, Lecture 8 2

Lecture Overview

Finish Q-learning

• Algorithm Summary

• Example

• Exploration vs. Exploitation

CPSC 422, Lecture 8 Slide 3

Example

Reward Model:
• -1 for doing UpCareful
• Negative reward when hitting a wall, as marked on the picture

 Six possible states <s0,..,s5>

4 actions:

• UpCareful: moves one tile up unless there is
wall, in which case stays in same tile. Always
generates a penalty of -1

• Left: moves one tile left unless there is wall, in
which case

stays in same tile if in s0 or s2

 Is sent to s0 if in s4

• Right: moves one tile right unless there is wall,
in which case stays in same tile

• Up: 0.8 goes up unless there is a wall, 0.1 like
Left, 0.1 like Right

+ 10

-100

-1

-1

-1 -1

-1 -1

4

CPSC 422, Lecture 8

Example
 The agent knows about the 6 states and 4

actions

 Can perform an action, fully observe its

state and the reward it gets

 Does not know how the states are

configured, nor what the actions do

• no transition model, nor reward model

+ 10

-100

-1 -1

-1

-1

-1 -1

5 CPSC 422, Lecture 8

Example (variable αk)
 Suppose that in the simple world described earlier, the

agent has the following sequence of experiences

 <s0, right, 0, s1, upCareful, -1, s3, upCareful, -1, s5, left, 0, s4, left, 10, s0>

 And repeats it k times (not a good behavior for a Q-learning

agent, but good for didactic purposes)

 Table shows the first 3 iterations of Q-learning when

• Q[s,a] is initialized to 0 for every a and s

• αk= 1/k, γ= 0.9

• For full demo, see http://artint.info/demos/rl/tGame.html

6 CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 

)00*9.00(10],[

]);,[])',[max9.0((],[],[

0

01
'

00





rightsQ

rightsQasQrrightsQrightsQ
a

k

1)00*9.01(10],[

];,[])',[max9.0((],[],[

1

13
'

11





upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

+ 10

-100

-1 -1

-1

-1

-1 -1

1)00*9.01(10],[

];,[])',[max9.0((],[],[

3

35
'

33





upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

0)00*9.00(10],[

];,[])',[max9.0((],[],[

5

54
'

55





LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

10)00*9.010(10],[

];,[])',[max9.0((],[],[

4

40
'

44





LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 0 0 0 0 0

Left 0 0 0 0 0 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=1

Only immediate rewards
are included in the update

in this first pass

7

CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 

0)00*9.00(2/10],[

]);,[])',[max9.0((],[],[

0

01
'

00





rightsQ

rightsQasQrrightsQrightsQ
a

k

1)10*9.01(2/11],[

],[])',[max9.0((],[],[

1

13
'

11





upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

+ 10

-100

-1 -1

-1

-1

-1 -1

1)10*9.01(2/11],[

],[])',[max9.0((],[],[

3

35
'

33





upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

5.4)010*9.00(2/10],[

],[])',[max9.0((],[],[

5

54
'

55





LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

10)100*9.010(110],[

],[])',[max9.0((],[],[

4

40
'

44





LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=2

1 step backup from
previous positive
reward in s4

8
CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 

0)00*9.00(3/10],[

]);,[])',[max9.0((],[],[

0

01
'

00





rightsQ

rightsQasQrrightsQrightsQ
a

k

1)10*9.01(3/11],[

],[])',[max9.0((],[],[

1

13
'

11





upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

+ 10

-100

-1 -1

-1

-1

-1 -1

35.0)15.4*9.01(3/11],[

],[])',[max9.0((],[],[

3

35
'

33





upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

6)5.410*9.00(3/15.4],[

],[])',[max9.0((],[],[

5

54
'

55





LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

10)100*9.010(3/110],[

],[])',[max9.0((],[],[

4

40
'

44





LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 4.5

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=3

The effect of
the positive
reward in s4 is
felt two steps
earlier at the
3rd iteration

9
CPSC 422, Lecture 8

0.35

6

Example (variable αk)

 As the number of iterations increases, the effect of the positive reward

achieved by moving left in s4 trickles further back in the sequence of steps

 Q[s4,left] starts changing only after the effect of the reward has reached s0

(i.e. after iteration 10 in the table)

10

CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 

0)00*9.00(10],[0 rightsQ

1)10*9.01(11],[1 upCarefulsQ

+ 10

-100

-1 -1

-1

-1

-1 -1

1)10*9.01(11],[3 upCarefulsQ

9)010*9.00(10],[

],[])',[max9.0((],[],[

5

54
'

55





LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

10)100*9.010(110],[4 LeftsQ

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=2

New evidence is given
much more weight
than original estimate

Example (Fixed α=1)
 First iteration same as before, let’s look at the second

11
CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 

0)00*9.00(10],[0 rightsQ

1)10*9.01(11],[1 upCarefulsQ

+ 10

-100

-1 -1

-1

-1

-1 -1

1.7)19*9.01(11],[

],[])',[max9.0((],[],[

3

35
'

33





upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

9)910*9.00(19],[5 LeftsQ

10)100*9.010(110],[4 LeftsQ

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 9

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=3

Same here

No change from previous
iteration, as all the reward
from the step ahead was
included there

12

CPSC 422, Lecture 8

Comparing fixed α (top) and variable α (bottom)

Fixed α generates faster update:

all states see some effect of the
positive reward from <s4, left> by
the 5th iteration

Each update is much larger

Gets very close to final numbers by
iteration 40, while with variable α
still not there by iteration 107

However:

Q-learning with fixed α is not

guaranteed to converge

13
CPSC 422, Lecture 8

On the approximation…

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 


'

'
)','(max),|'()(),(

s
a

asQassPs R asQ 

True relation between
Q(s.a) and Q(s’a’)

Q-learning
approximation based on
each individual
experience <s, a, r, s’>

14 CPSC 422, Lecture 8

A. There is positive reward in most states

B. Q-learning tries each action an
unbounded number of times

C. The transition model is not sparse

 For the approximation to work…..

Why approximations work…

 Way to get around the missing transition model and reward
model

 Aren’t we in danger of using data coming from unlikely
transition to make incorrect adjustments?

 No, as long as Q-learning tries each action an unbounded
number of times

 Frequency of updates reflects transition model, P(s’|a,s)

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 


'

'
)','(max),|'()(),(

s
a

asQassPs R asQ 

True relation between
Q(s.a) and Q(s’a’)

Q-learning
approximation based on
each individual
experience <s, a, s’>

15 CPSC 422, Lecture 8

CPSC 422, Lecture 8 16

Lecture Overview

Finish Q-learning

• Algorithm

• Example

• Exploration vs. Exploitation

What Does Q-Learning learn

 Does Q-learning gives the agent an optimal policy?

CPSC 422, Lecture 8 17

Q values
s0 s1 … sk

a0 Q[s0,a0] Q[s1,a0] …. Q[sk,a0]

a1 Q[s0,a1] Q[s1,a1] … Q[sk,a1]

… … … …. …

an Q[s0,an] Q[s1,an] …. Q[sk,an]

CPSC 422, Lecture 8 18

Exploration vs. Exploitation

 Q-learning does not explicitly tell the agent what to do

• just computes a Q-function Q[s,a] that allows the agent to see, for every
state, which is the action with the highest expected reward

 Given a Q-function the agent can :

• Exploit the knowledge accumulated so far, and chose the action
that maximizes Q[s,a] in a given state (greedy behavior)

• Explore new actions, hoping to improve its estimate of the optimal
Q-function, i.e. *do not chose* the action suggested by the current
Q[s,a]

CPSC 422, Lecture 8 19

Exploration vs. Exploitation

 When to explore and when the exploit?

1. Never exploring may lead to being stuck in a suboptimal course of
actions

2. Exploring too much is a waste of the knowledge accumulated via
experience

CPSC 422, Lecture 8 20

A. Only (1) is true B. Only (2) is true

C. Both are true D. Both are false

Exploration vs. Exploitation

 When to explore and when the exploit?

• Never exploring may lead to being stuck in a suboptimal course of
actions

• Exploring too much is a waste of the knowledge accumulated via
experience

 Must find the right compromise

CPSC 422, Lecture 8 21

Exploration Strategies

 Hard to come up with an optimal exploration policy (problem

is widely studied in statistical decision theory)

 But intuitively, any such strategy should be greedy in the

limit of infinite exploration (GLIE), i.e.

• Choose the predicted best action in the limit

• Try each action an unbounded number of times

• We will look at two exploration strategies

• ε-greedy

• soft-max

CPSC 422, Lecture 8 23

ε-greedy

 Choose a random action with probability ε and choose

best action with probability 1- ε

 First GLIE condition (try every action an unbounded

number of times) is satisfied via the ε random selection

 What about second condition?

• Select predicted best action in the limit.

 reduce ε overtime!

CPSC 422, Lecture 8 24

Soft-Max

 Takes into account improvement in estimates of expected

reward function Q[s,a]

• Choose action a in state s with a probability proportional to current
estimate of Q[s,a]

/],[

/],[


a

asQ

asQ

e

e




 τ (tau) in the formula above influences how randomly actions

should be chosen

• if τ is high, the exponentials approach 1, the fraction approaches
1/(number of actions), and each action has approximately the same
probability of being chosen (exploration or exploitation?)

• as τ → 0, the exponential with the highest Q[s,a] dominates, and the
current best action is always chosen (exploration or exploitation?)

CPSC 422, Lecture 8 25

],[

],[


a

asQ

asQ

e

e

CPSC 422, Lecture 8 Slide 26

Learning Goals for today’s class

You can:

• Explain, trace and implement Q-learning

• Describe and compare techniques to combine exploration

with exploitation

CPSC 422, Lecture 8 Slide 27

TODO for Mon

• Carefully read : A Markov decision process
approach to multi-category patient scheduling in
a diagnostic facility, Artificial Intelligence in
Medicine Journal, 2011

• Follow instructions on course WebPage

<Readings>

• Keep working on assignment-1 (due on Wed)

Overview (NOT FOR 422)

 Introduction

 Q-learning

 Exploration vs. Exploitation

 Evaluating RL algorithms

 On-Policy Learning: SARSA

 Model-based Q-learning

CPSC 422, Lecture 8 28

Learning before vs. during deployment

 As we saw earlier, there are two possible modus operandi for our

learning agents

• act in the environment to learn how it works:

 first learn an optimal policy, then use this policy to act (there is a
learning phase before deployment)

• Learn as you go:

 start operating in the environment right away and learn from actions
(learning happens during deployment)

 If there is time to learn before deployment, the agent should try to

do its best to learn as much as possible about the environment

• even engage in locally suboptimal behaviors, because this will guarantee
reaching an optimal policy in the long run

 If learning while “at work”, suboptimal behaviors could be costly
CPSC 422, Lecture 8 29

Example

 Consider, for instance, our sample grid game:

• the optimal policy is to go up in S0

• But if the agent includes some exploration in its
policy (e.g. selects 20% of its actions randomly),
exploring in S2 could be dangerous because it may
cause hitting the -100 wall

• No big deal if the agent is not deployed yet, but not
ideal otherwise

+ 10

-100

-1 -1

-1

-1

-1 -1

 Q-learning would not detect this problem

• It does off-policy learning, i.e., it focuses on the optimal
policy

 On-policy learning addresses this problem

CPSC 422, Lecture 8 30

On-policy learning: SARSA

 On-policy learning learns the value of the policy being followed.

• e.g., act greedily 80% of the time and act randomly 20% of the time

• Better to be aware of the consequences of exploration has it happens, and
avoid outcomes that are too costly while acting, rather than looking for the
true optimal policy

 SARSA

• So called because it uses <state, action, reward, state, action> experiences
rather than the <state, action, reward, state> used by Q-learning

• Instead of looking for the best action at every step, it evaluates the actions
suggested by the current policy

• Uses this info to revise it

CPSC 422, Lecture 8 31

On-policy learning: SARSA

 Given an experience <s,a,r,s’,a’>, SARSA updates Q[s,a] as

follows

]),[])','[((],[],[asQasQrasQasQ  

What’s different from Q-learning?

CPSC 422, Lecture 8 32

On-policy learning: SARSA

 Given an experience <s ,a, r, s’, a’>, SARSA updates Q[s,a] as

follows

]),[])','[((],[],[asQasQrasQasQ  

 While Q-learning was using

 There is no more MAX operator in the equation, there is instead

the Q-value of the action suggested by the policy

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 

CPSC 422, Lecture 8 33

On-policy learning: SARSA

 Does SARSA remind you of any other algorithm we have seen

before?

CPSC 422, Lecture 8 34

Policy Iteration
 Algorithm

• π ← an arbitrary initial policy, U ← A vector of utility values, initially 0

• 2. Repeat until no change in π

(a) Compute new utilities given π and current U (policy evaluation)

(b) Update π as if utilities were correct (policy improvement)


'

)'()'),(,()()(
s

i sUsssTs R s U 











'

''

)'()',,(maxarg)(then

)'()'),(,()'()',,(max

sFor

sa
i

s

i

s
a

sUsasTs

sUsssT sUsasTIf

i



Expected value of following
current пi from s

Expected value of following
another action in s

Policy
Improvement

 step

CPSC 422, Lecture 8 35

]),[]','[(],[],[asQasQrasQasQ  

0)00*9.00(10],[

]);,[],[9.0(],[],[

0

0100





rightsQ

rightsQUpCarefulsQrrightsQrightsQ k

1)00*9.01(10],[

]);,[],[9.0(],[],[

1

1311





upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ k

+ 10

-100

-1 -1

-1

-1

-1 -1

1)00*9.01(10],[

]);,[],[9.0(],[],[

3

3533





upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ k

0)00*9.00(10],[

]);,[],[9.0(],[],[

5

5455





LeftsQ

LeftsQleftsQrLeftsQLeftsQ k

10)00*9.010(10],[

]);,[],[9.0(],[],[

4

4044





LeftsQ

LeftsQRightsQrLeftsQLeftsQ k

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 0 0 0 0 0

Left 0 0 0 0 0 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=1

Only immediate rewards
are included in the update,

as with Q-learning

CPSC 422, Lecture 8 36

]),[]','[(],[],[asQasQrasQasQ  

9.0)0)1(*9.00(2/10],[

]);,[],[9.0(],[],[

0

0100





rightsQ

rightsQUpCarefulsQrrightsQrightsQ k

45.1)1)1(*9.01(2/11],[

]);,[],[9.0(],[],[

1

1311





upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ k

+ 10

-100

-1 -1

-1

-1

-1 -1

1)10*9.01(2/11],[

]);,[],[9.0(],[],[

3

3533





upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ k

5.4)010*9.00(2/10],[

]);,[],[9.0(],[],[

5

5455





LeftsQ

LeftsQleftsQrLeftsQLeftsQ k

10)100*9.010(2/110],[

]);,[],[9.0(],[],[

4

4044





LeftsQ

LeftsQRightsQrLeftsQLeftsQ k

k=1 k=2
Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

SARSA backs up the
expected reward of the next
action, rather than the max
expected reward

CPSC 422, Lecture 8 37

Comparing SARSA and Q-learning

 For the little 6-states world

 Policy learned by Q-learning 80% greedy is to go up in s0 to

reach s4 quickly and get the big +10 reward

+ 10

-100

-1 -1

-1

-1

-1 -1

CPSC 422, Lecture 8 38

Comparing SARSA and Q-learning

 Policy learned by SARSA 80% greedy is to go left in s0

 Safer because avoid the chance of getting the -100 reward in s2

 but non-optimal => lower q-values

+ 10

-100

-1 -1

-1

-1

-1 -1

CPSC 422, Lecture 8 39

SARSA Algorithm

This could be, for instance any ε-
greedy strategy:
- Choose random ε times, and max
the rest

This could be, for instance any ε-
greedy strategy:
-Choose random ε times, and max
the rest

If the random step is chosen
here, and has a bad negative
reward, this will affect the
value of Q[s,a].

Next time in s, a’ may no
longer be the action selected
because of its lowered Q
value

CPSC 422, Lecture 8 40

Another Example
 Gridworld with:

• Deterministic actions up, down, left, right

• Start from S and arrive at G

• Reward is -1 for all transitions, except those into the region marked “Cliff”

Falling into the cliff causes the agent to be sent back to start: r = -100

CPSC 422, Lecture 8 41

Another Example

 Because of negative reward for every step taken, the optimal

policy over the four standard actions is to take the shortest path

along the cliff

 But if the agents adopt an ε-greedy action selection strategy with

ε=0.1, walking along the cliff is dangerous

• The optimal path that considers exploration is to go around as far as
possible from the cliff

CPSC 422, Lecture 8 42

Q-learning vs. SARSA

 Q-learning learns the optimal policy, but because it does so

without taking exploration into account, it does not do so well

while the agent is exploring

• It occasionally falls into the cliff, so its reward per episode is not that great

 SARSA has better on-line performance (reward per episode),

because it learns to stay away from the cliff while exploring

• But note that if ε→0, SARSA and Q-learning would asymptotically
converge to the optimal policy CPSC 422, Lecture 8 43

Problem with Model-free methods

 Q-learning and SARSA are model-free methods

 What does this mean?

CPSC 422, Lecture 8 44

Problems With Model-free Methods

 Q-learning and SARSA are model-free methods

• They do not need to learn the transition and/or reward model, they are
implicitly taken into account via experiences

 Sounds handy, but there is a main disadvantage:

• How often does the agent get to update its Q-estimates?

CPSC 422, Lecture 8 45

Problems with Model-free Methods

 Q-learning and SARSA are model-free methods

• They do not need to learn the transition and/or reward model, they are
implicitly taken into account via experiences

 Sounds handy, but there is a main disadvantage:

• How often does the agent get to update its Q-estimates?

• Only after a new experience comes in

• Great if the agent acts very frequently, not so great if actions are sparse,
because it wastes computation time

CPSC 422, Lecture 8 46

Model-based methods
 Idea

• learn the MDP and interleave acting and planning.

 After each experience,

• update probabilities and the reward,

• do some steps of value iteration (asynchronous) to get better estimates of
state utilities U(s) given the current model and reward function

• Remember that there is the following link between Q values and utility
values

 (1)),(max)(saQsU
a



(2))'(),|'()(),(
'


s

sUassPs R asQ 


'

'
)','(max),|'()(),(

s
a

asQassPs R asQ 

CPSC 422, Lecture 8 47

VI algorithm

CPSC 422, Lecture 8 48

Asynchronous Value Iteration

 The “basic” version of value iteration applies the Bellman update to

all states at every iteration

 This is in fact not necessary

• On each iteration we can apply the update only to a chosen subset of states

• Given certain conditions on the value function used to initialize the process,
asynchronous value iteration converges to an optimal policy

 Main advantage

• one can design heuristics that allow the algorithm to concentrate on states
that are likely to belong to the optimal policy

• Much faster convergence

CPSC 422, Lecture 8 49

Asynchronous VI algorithm

for some

CPSC 422, Lecture 8 50

Model-based RL algorithm

Model Based Reinfortcement Learner
inputs:
S is a set of states, A is a set of actions, γ the discount, c is a prior count
internal state:
real array Q[S,A], R[S,A, S’]
integer array T[S,A, S’]
previous state s
previous action a

CPSC 422, Lecture 8 51

Counts of events when action
a performed in s generated s’

TD-based estimate of R(s,a,s’)

Asynchronous value
iteration steps

Frequency of transition
from s1 to s2 via a1

Why is the reward
inside the summation?

What is this c for?

CPSC 422, Lecture 8 52

Discussion

Which Q values should asyncronous VI update?

• At least s in which the action was generated

• Then either select states randomly, or

• States that are likely to get their Q-values changed because
they can reach states with Q-values that have changed the
most

How many steps of asynchronous value-iteration to

perform?

CPSC 422, Lecture 8 53

Discussion

Which states to update?

• At least s in which the action was generated

• Then either select states randomly, or

• States that are likely to get their Q-values changed because
they can reach states with Q-values that have changed the
most

How many steps of asynchronous value-iteration to

perform?

• As many as can be done before having to act again

CPSC 422, Lecture 8 54

Q-learning vs. Model-based

 Is it better to learn a model and a utility function or an action

value function with no model?

• Still an open-question

 Model-based approaches require less data to learn well, but they

can be computationally more expensive (time per iteration)

 Q-learning takes longer because it does not enforce consistency

among Q-values via the model

• Especially true when the environment becomes more complex

• In games such as chess and backgammon, model-based approaches have
been more successful that q-learning methods

 Cost/ease of acting needs to be factored in

CPSC 422, Lecture 8 55

Reinforcement Learning

CPSC 422, Lecture 8 56

Overview

 Introduction

 Q-learning

 Exploration Exploitation

 Evaluating RL algorithms

 On-Policy learning: SARSA

 Model-based Q-learning

CPSC 422, Lecture 8 57

Overview

 Introduction

 Q-learning

 Exploration vs. Exploitation

 Evaluating RL algorithms

 On-Policy Learning: SARSA

 Model-based Q-learning

CPSC 422, Lecture 8 58

Evaluating RL Algorithms

 Two possible measures

• Quality of the optimal policy

• Reward received while looking for the policy

 If there is a lot of time for learning before the agent is deployed,

then quality of the learned policy is the measure to consider

 If the agent has to learn while being deployed, it may not get to

the optimal policy for a along time

• Reward received while learning is the measure to look at, e.g, plot
cumulative reward as a function of number of steps

• One algorithm dominates another if its plot is consistently above

CPSC 422, Lecture 8 59

Evaluating RL Algorithms

 Plots for example 11.8 in textbook (p. 464), with

• Either fixed or variable α

• Different initial values for Q[s,a]

CPSC 422, Lecture 8 60

Evaluating RL Algorithms

 Lots of variability in each algorithm for different runs

• for fair comparison, run each algorithm several times and report average
behavior

 Relevant statistics of the plot

• Asymptotic slopes: how good the policy is after the algorithm stabilizes

• Plot minimum: how much reward must be sacrificed before starting to
gain (cost of learning)

• zero-crossing: how long it takes for the algorithm to recuperate its cost of
learning

CPSC 422, Lecture 8 61

