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Lecture Overview 

Finish Q-learning 

• Algorithm Summary 

• Example 

 

 

 

 

• Exploration vs. Exploitation 
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Example 

Reward Model:  
• -1 for doing UpCareful 
• Negative reward when hitting  a wall, as marked on the picture 

 Six possible states <s0,..,s5> 

4 actions:  

• UpCareful: moves one tile up unless there is 
wall, in which case stays in same tile. Always 
generates a penalty of -1 

• Left: moves one tile left  unless there is wall, in 
which case  

stays in same tile if  in s0 or s2 

 Is sent to s0 if in s4  

• Right: moves one tile right  unless there is wall, 
in which case stays in same tile 

• Up: 0.8 goes up unless there is a wall, 0.1 like 
Left, 0.1 like Right 
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Example 
 The agent knows about the 6 states and 4 

actions 

 Can perform an action, fully observe its 

state and the reward it gets 

 Does not know how the states are 

configured, nor what the actions do  

• no transition model, nor reward model 
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Example (variable αk) 
 Suppose that in the simple world described earlier, the 

agent has the following sequence of experiences 

          <s0, right, 0, s1, upCareful, -1, s3,  upCareful, -1, s5, left, 0, s4, left, 10, s0> 

 And repeats it k times (not a good behavior for a Q-learning 

agent, but good for didactic purposes) 

 Table shows the first 3 iterations of Q-learning when 

• Q[s,a] is initialized to 0 for every a and s 

• αk= 1/k, γ= 0.9 

 

 

 

• For full demo, see http://artint.info/demos/rl/tGame.html 
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Q[s,a] s0 s1 s2 s3 s4 s5 

upCareful 0 0 0 0 0 0 

Left 0 0 0 0 0 0 

Right 0 0 0 0 0 0 

Up 0 0 0 0 0 0 

k=1 k=1 

Only immediate rewards  
are included in the update 

in this first pass  
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Q[s,a] s0 s1 s2 s3 s4 s5 

upCareful 0 -1 0 -1 0 0 

Left 0 0 0 0 10 0 

Right 0 0 0 0 0 0 

Up 0 0 0 0 0 0 

k=1 k=2 

1 step backup from 
previous positive 
reward in s4 
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Q[s,a] s0 s1 s2 s3 s4 s5 

upCareful 0 -1 0 -1 0 0 

Left 0 0 0 0 10 4.5 

Right 0 0 0 0 0 0 

Up 0 0 0 0 0 0 

k=1 k=3 

The effect of 
the positive 
reward in s4 is 
felt two steps 
earlier at the 
3rd iteration 
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Example (variable αk) 

 As the number of iterations increases, the effect of the positive reward 

achieved by moving left in s4 trickles further back in the sequence of steps 

 Q[s4,left] starts changing only after the effect of the reward has reached s0 

(i.e. after iteration 10 in the table) 
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Q[s,a] s0 s1 s2 s3 s4 s5 

upCareful 0 -1 0 -1 0 0 

Left 0 0 0 0 10 0 

Right 0 0 0 0 0 0 

Up 0 0 0 0 0 0 

k=2 

New evidence is given 
much more weight 
than original estimate 

Example (Fixed α=1) 
 First iteration same as before, let’s look at the second 
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Same here 

No change from previous 
iteration, as all the reward 
from the step ahead was 
included  there 
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Comparing fixed α (top) and variable α (bottom) 

Fixed α generates faster update:  
 
all states see some effect of the  
positive reward from <s4, left> by  
the 5th iteration 
 
Each update is much larger 
 
Gets very close to final numbers by  
iteration 40, while with variable α 
still  not there by iteration 107 

 

However: 
 
Q-learning with fixed α is not 

guaranteed to converge 
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On the approximation…  
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True relation between 
Q(s.a) and Q(s’a’) 

Q-learning 
approximation based on 
each individual 
experience <s, a, r, s’> 
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A. There is positive reward in most states 

B. Q-learning tries each action an 
unbounded number of times 

C. The transition model is not sparse  

 For the approximation to work….. 



Why approximations work…  

 Way to get around the missing  transition model and reward 
model 

 Aren’t we in danger of using data coming from unlikely 
transition to make incorrect adjustments? 

 No, as long as Q-learning tries each action an unbounded 
number of times 

 Frequency of updates reflects transition model, P(s’|a,s) 
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Lecture Overview 

Finish Q-learning 

• Algorithm 

• Example 

 

 

 

 

• Exploration vs. Exploitation 

 

 

 

 



What Does Q-Learning learn 

 Does Q-learning gives the agent an optimal policy?  
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Q values 
s0 s1 … sk 

a0 Q[s0,a0] Q[s1,a0] …. Q[sk,a0] 

a1 Q[s0,a1] Q[s1,a1] … Q[sk,a1] 

… … … …. … 

an Q[s0,an] Q[s1,an] …. Q[sk,an] 
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Exploration vs. Exploitation 

 Q-learning does not explicitly tell the agent what to do  

• just computes a Q-function Q[s,a] that allows the agent to see, for every 
state, which is the action with the highest expected reward 

 

 Given a Q-function the agent can : 

• Exploit the knowledge accumulated so far, and chose the action 
that maximizes Q[s,a] in a  given state (greedy behavior) 

• Explore new actions, hoping to improve its estimate of the optimal 
Q-function, i.e. *do not chose* the action suggested by the current 
Q[s,a] 
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Exploration vs. Exploitation 

 When to explore and when the exploit? 

1. Never exploring may lead to being stuck in a suboptimal course of 
actions 

2. Exploring too much is a waste of the knowledge accumulated via 
experience 
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A. Only (1) is true B. Only (2) is true 

C. Both are true D. Both are false 



Exploration vs. Exploitation 

 When to explore and when the exploit? 

• Never exploring may lead to being stuck in a suboptimal course of 
actions 

• Exploring too much is a waste of the knowledge accumulated via 
experience 

 Must find the right compromise 
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Exploration Strategies 

 Hard to come up with an optimal exploration policy (problem 

is widely studied in statistical decision theory) 

 But intuitively, any such strategy should be greedy in the 

limit of infinite exploration (GLIE), i.e.  

• Choose the predicted best action in the limit 

• Try each action an unbounded number of times 

• We will look at two exploration strategies 

• ε-greedy 

• soft-max 
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ε-greedy 

 Choose a random action with probability  ε and choose 

best action with probability 1- ε 

 

 

 First  GLIE condition (try every action an unbounded 

number of times)  is  satisfied via the ε random selection 

 What about second condition? 

• Select predicted best action in the limit. 

 reduce ε overtime! 
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Soft-Max 

 Takes into account improvement in estimates of expected 

reward function Q[s,a] 

• Choose action a in state s with a probability proportional to current 
estimate of Q[s,a] 
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 τ (tau)  in the formula above influences how randomly actions 

should be chosen 

• if τ is high, the exponentials approach 1, the fraction approaches 
1/(number of actions), and each action has approximately the same 
probability of being chosen ( exploration or exploitation?) 

•  as τ → 0, the exponential with the highest Q[s,a] dominates, and the 
current best action is always chosen (exploration or exploitation?) 
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Learning Goals for today’s class 

You can: 

• Explain, trace and implement Q-learning 

• Describe and compare techniques to combine exploration 

with exploitation 
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TODO for Mon 

 
• Carefully read : A Markov decision process 
approach to multi-category patient scheduling in 
a diagnostic facility, Artificial Intelligence in 
Medicine Journal, 2011 
 
• Follow instructions on course WebPage 

<Readings> 
 
• Keep working on assignment-1 (due on Wed) 

 
 
 



Overview (NOT FOR 422) 

 Introduction 

 Q-learning 

 Exploration vs. Exploitation 

 Evaluating RL algorithms 

 On-Policy Learning: SARSA 

 Model-based Q-learning 

 

CPSC 422, Lecture 8 28 



Learning before vs. during deployment  

 As we saw earlier, there are two possible modus operandi for our 

learning agents 

• act in the environment to learn how it works:  

 first learn an optimal policy, then use this policy to act (there is a 
learning phase before deployment) 

• Learn as you go: 

  start operating in the environment right away and learn from actions 
(learning happens  during deployment) 

 If there is time to learn before deployment, the agent should try to 

do its best to learn as much as possible about the environment 

• even engage in locally suboptimal behaviors, because this will guarantee 
reaching an optimal policy in the long run 

 If learning while “at work”, suboptimal behaviors could be costly  
CPSC 422, Lecture 8 29 



Example 

 Consider, for instance, our sample grid game:  

• the optimal policy is to go up in S0 

• But if the agent includes some exploration in its 
policy (e.g. selects 20% of its actions randomly), 
exploring in S2 could be dangerous because it may 
cause hitting the -100 wall 

• No big deal if the agent is not deployed yet, but not 
ideal otherwise 

 

+ 10 

-100 

-1 -1 

-1 

-1 

-1 -1 

 Q-learning would not detect this problem  

• It does  off-policy learning, i.e., it focuses on the optimal 
policy 

 On-policy learning addresses this problem 
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On-policy learning: SARSA 

 On-policy learning learns the value of the policy being followed. 

• e.g., act greedily 80% of the time and act randomly 20% of the time 

• Better  to be aware of the consequences of exploration has it happens, and 
avoid outcomes that are too costly while acting, rather than looking for the 
true optimal policy 

 SARSA 

• So called because it uses <state, action, reward, state, action> experiences 
rather than the <state, action, reward, state> used by Q-learning 

• Instead of looking for the best action at every step, it evaluates the actions 
suggested by the current policy 

• Uses this info to revise it 

 

CPSC 422, Lecture 8 31 



On-policy learning: SARSA 

 Given an experience <s,a,r,s’,a’>, SARSA  updates Q[s,a] as 

follows 

 ]),[])','[((],[],[ asQasQrasQasQ  

What’s different from Q-learning? 
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On-policy learning: SARSA 

 Given an experience <s ,a, r, s’, a’>, SARSA  updates Q[s,a] as 

follows 
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 While Q-learning was using 

 

 There is no more MAX operator in the equation, there is instead 

the Q-value of the action suggested by the policy 
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On-policy learning: SARSA 

 Does SARSA remind you of any other algorithm we have seen 

before? 
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Policy Iteration 
 Algorithm 

• π ← an arbitrary initial policy, U ← A vector of utility values, initially 0 

• 2. Repeat until no change in π 

(a) Compute new utilities given π and current U (policy evaluation) 

 

 

(b) Update π as if utilities were correct (policy improvement) 
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k=1 k=1 

Only immediate rewards  
are included in the update, 

as with Q-learning  
 

CPSC 422, Lecture 8 36 



]),[]','[(],[],[ asQasQrasQasQ  

9.0)0)1(*9.00(2/10],[

]);,[],[9.0(],[],[

0

0100





rightsQ

rightsQUpCarefulsQrrightsQrightsQ k

45.1)1)1(*9.01(2/11],[

]);,[],[9.0(],[],[

1

1311





upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ k

+ 10 

-100 

-1 -1 

-1 

-1 

-1 -1 

1)10*9.01(2/11],[

]);,[],[9.0(],[],[

3

3533





upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ k

5.4)010*9.00(2/10],[

]);,[],[9.0(],[],[

5

5455





LeftsQ

LeftsQleftsQrLeftsQLeftsQ k

10)100*9.010(2/110],[

]);,[],[9.0(],[],[

4

4044





LeftsQ

LeftsQRightsQrLeftsQLeftsQ k

k=1 k=2 
Q[s,a] s0 s1 s2 s3 s4 s5 
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Up 0 0 0 0 0 0 

SARSA backs up the 
expected reward of the next 
action, rather than the max 
expected reward 
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Comparing SARSA and Q-learning 

 For the little 6-states world 

 

 Policy learned by Q-learning 80% greedy is to go  up  in s0 to 

reach s4 quickly  and get the big +10 reward 
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CPSC 422, Lecture 8 38 



Comparing SARSA and Q-learning 

 Policy learned by SARSA 80% greedy is to go left in s0  

 Safer because avoid the chance of getting the -100 reward in s2 

 but non-optimal => lower q-values   
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SARSA Algorithm 

This could be, for instance any ε-
greedy strategy: 
- Choose random ε times, and max 
the rest 

This could be, for instance any ε-
greedy strategy: 
-Choose random ε times, and max 
the rest 

If the random step is chosen 
here, and has a bad negative 
reward, this will affect the 
value of Q[s,a]. 
 
Next time in s, a’ may no 
longer be the action selected 
because of its lowered Q 
value 
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Another Example 
 Gridworld with: 

• Deterministic actions up, down, left, right 

• Start from S and arrive at G 

• Reward is -1 for all transitions, except those into the region marked “Cliff” 

Falling into the cliff causes the agent to be sent back to start: r = -100 
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Another Example 

 Because of  negative reward for every step taken, the optimal 

policy over the four standard actions is to take the shortest path 

along the cliff 

 But if the agents adopt an ε-greedy action selection strategy with 

ε=0.1, walking along the cliff is dangerous 

• The optimal path that considers exploration is to go around as far as 
possible from the cliff 
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Q-learning vs. SARSA 

 Q-learning learns the optimal policy, but because it does so 

without taking exploration into account, it does not do so well 

while the agent is exploring 

• It occasionally falls into the cliff, so its reward per episode is not that great 

 SARSA has better on-line performance (reward per episode), 

because it learns to stay away from the cliff while exploring 

• But note that if ε→0, SARSA and Q-learning would asymptotically 
converge to the  optimal policy CPSC 422, Lecture 8 43 



Problem with Model-free methods 
 

 Q-learning and SARSA are model-free methods 

                    What does this mean? 
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Problems With Model-free Methods 

 Q-learning and SARSA are model-free methods 

• They do not need to learn the transition and/or reward model, they are 
implicitly taken into account via experiences 

 Sounds handy, but there is a main disadvantage: 

• How often does the agent get to update its Q-estimates? 
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Problems with Model-free Methods 

 Q-learning and SARSA are model-free methods 

• They do not need to learn the transition and/or reward model, they are 
implicitly taken into account via experiences 

 Sounds handy, but there is a main disadvantage: 

• How often does the agent get to update its Q-estimates? 

• Only after a new experience comes in 

• Great if the agent acts very frequently, not so great if actions are sparse, 
because it wastes computation time 
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Model-based methods 
 Idea 

•  learn the MDP and interleave acting and planning. 

 After each experience,  

• update probabilities and the reward,  

• do some steps of value iteration (asynchronous ) to get better estimates of 
state utilities U(s)  given the current model and reward function 

• Remember that there is the following link between Q values and utility 
values 
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VI algorithm 
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Asynchronous Value Iteration 

 The “basic” version of value iteration applies the Bellman update to 

all states at every iteration 

 This is in fact not necessary 

• On each iteration we can apply the update only to a chosen subset of states 

• Given certain conditions on the value function used to initialize the process, 
asynchronous value iteration converges to an optimal policy 

 
 Main advantage  

•  one can design heuristics that allow the algorithm to concentrate on states 
that are likely to belong to the optimal policy 

 

• Much faster convergence 
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Asynchronous VI algorithm 

for some 
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Model-based RL algorithm 

Model Based Reinfortcement Learner 
inputs: 
S is a set of states, A is a set of actions, γ the discount, c is a prior count 
internal state: 
real array Q[S,A], R[S,A, S’] 
integer array T[S,A, S’] 
previous state s 
previous action a 
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Counts of events when action 
a performed in s generated s’ 

TD-based estimate of R(s,a,s’) 

Asynchronous value 
iteration steps 

Frequency of transition 
from s1 to s2 via a1 

Why is the reward 
inside the summation? 

What is this c for? 
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Discussion 

Which Q values should asyncronous  VI update? 

• At least s in which the action was generated 

• Then either select states randomly, or  

• States that are likely to get their Q-values changed because 
they can reach states with Q-values that have changed the 
most 

How many steps of asynchronous value-iteration to 

perform?  
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Discussion 

Which states to update? 

• At least s in which the action was generated 

• Then either select states randomly, or  

• States that are likely to get their Q-values changed because 
they can reach states with Q-values that have changed the 
most 

How many steps of asynchronous value-iteration to 

perform?  

• As many as can be done before having to act again 
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Q-learning vs. Model-based 

 Is it better to learn a model and a utility function or an action 

value function with no model? 

• Still an open-question 

 Model-based approaches require less data to learn well, but they 

can be computationally more expensive (time per iteration) 

 Q-learning takes longer because it does not enforce consistency 

among Q-values via the model 

• Especially true when the environment becomes more complex 

• In games such as chess and backgammon, model-based approaches have 
been more successful that q-learning methods 

  Cost/ease of acting needs to be factored in 

CPSC 422, Lecture 8 55 



Reinforcement Learning 
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Overview 

 Introduction 

 Q-learning 

 Exploration Exploitation 

 Evaluating RL algorithms 

 On-Policy learning: SARSA 

 Model-based Q-learning 
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Overview 

 Introduction 

 Q-learning 
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Evaluating RL Algorithms 

 Two possible measures 

• Quality of the optimal policy 

• Reward received while looking for the policy 

 If there is a lot of time for learning before the agent is deployed, 

then quality  of the learned  policy is the measure to consider 

 If the agent has to learn while being deployed, it may not get to 

the optimal policy for  a along time 

• Reward received while learning is the measure to look at, e.g, plot 
cumulative reward as a function of number of steps 

• One algorithm dominates another if its plot is consistently above 
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Evaluating RL Algorithms 

 Plots for example 11.8 in textbook (p. 464), with 

• Either fixed or variable α 

• Different initial values for Q[s,a] 
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Evaluating RL Algorithms 

 Lots of variability in each algorithm for different runs 

• for  fair comparison, run each algorithm several times and report average 
behavior 

 Relevant statistics of  the plot 

• Asymptotic slopes: how good the policy is after the algorithm stabilizes 

• Plot minimum: how much reward must be sacrificed before starting to 
gain (cost of learning) 

• zero-crossing: how long it takes for the algorithm to recuperate its cost of 
learning 
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