
CPSC 422, Lecture 8 Slide 1

Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 8

Sep, 25, 2015

CPSC 422, Lecture 8 2

Lecture Overview

Finish Q-learning

• Algorithm Summary

• Example

• Exploration vs. Exploitation

CPSC 422, Lecture 8 Slide 3

Example

Reward Model:
• -1 for doing UpCareful
• Negative reward when hitting a wall, as marked on the picture

 Six possible states <s0,..,s5>

4 actions:

• UpCareful: moves one tile up unless there is
wall, in which case stays in same tile. Always
generates a penalty of -1

• Left: moves one tile left unless there is wall, in
which case

stays in same tile if in s0 or s2

 Is sent to s0 if in s4

• Right: moves one tile right unless there is wall,
in which case stays in same tile

• Up: 0.8 goes up unless there is a wall, 0.1 like
Left, 0.1 like Right

+ 10

-100

-1

-1

-1 -1

-1 -1

4

CPSC 422, Lecture 8

Example
 The agent knows about the 6 states and 4

actions

 Can perform an action, fully observe its

state and the reward it gets

 Does not know how the states are

configured, nor what the actions do

• no transition model, nor reward model

+ 10

-100

-1 -1

-1

-1

-1 -1

5 CPSC 422, Lecture 8

Example (variable αk)
 Suppose that in the simple world described earlier, the

agent has the following sequence of experiences

 <s0, right, 0, s1, upCareful, -1, s3, upCareful, -1, s5, left, 0, s4, left, 10, s0>

 And repeats it k times (not a good behavior for a Q-learning

agent, but good for didactic purposes)

 Table shows the first 3 iterations of Q-learning when

• Q[s,a] is initialized to 0 for every a and s

• αk= 1/k, γ= 0.9

• For full demo, see http://artint.info/demos/rl/tGame.html

6 CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

)00*9.00(10],[

]);,[])',[max9.0((],[],[

0

01
'

00

rightsQ

rightsQasQrrightsQrightsQ
a

k

1)00*9.01(10],[

];,[])',[max9.0((],[],[

1

13
'

11

upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

+ 10

-100

-1 -1

-1

-1

-1 -1

1)00*9.01(10],[

];,[])',[max9.0((],[],[

3

35
'

33

upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

0)00*9.00(10],[

];,[])',[max9.0((],[],[

5

54
'

55

LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

10)00*9.010(10],[

];,[])',[max9.0((],[],[

4

40
'

44

LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 0 0 0 0 0

Left 0 0 0 0 0 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=1

Only immediate rewards
are included in the update

in this first pass

7

CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

0)00*9.00(2/10],[

]);,[])',[max9.0((],[],[

0

01
'

00

rightsQ

rightsQasQrrightsQrightsQ
a

k

1)10*9.01(2/11],[

],[])',[max9.0((],[],[

1

13
'

11

upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

+ 10

-100

-1 -1

-1

-1

-1 -1

1)10*9.01(2/11],[

],[])',[max9.0((],[],[

3

35
'

33

upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

5.4)010*9.00(2/10],[

],[])',[max9.0((],[],[

5

54
'

55

LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

10)100*9.010(110],[

],[])',[max9.0((],[],[

4

40
'

44

LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=2

1 step backup from
previous positive
reward in s4

8
CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

0)00*9.00(3/10],[

]);,[])',[max9.0((],[],[

0

01
'

00

rightsQ

rightsQasQrrightsQrightsQ
a

k

1)10*9.01(3/11],[

],[])',[max9.0((],[],[

1

13
'

11

upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

+ 10

-100

-1 -1

-1

-1

-1 -1

35.0)15.4*9.01(3/11],[

],[])',[max9.0((],[],[

3

35
'

33

upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

6)5.410*9.00(3/15.4],[

],[])',[max9.0((],[],[

5

54
'

55

LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

10)100*9.010(3/110],[

],[])',[max9.0((],[],[

4

40
'

44

LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 4.5

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=3

The effect of
the positive
reward in s4 is
felt two steps
earlier at the
3rd iteration

9
CPSC 422, Lecture 8

0.35

6

Example (variable αk)

 As the number of iterations increases, the effect of the positive reward

achieved by moving left in s4 trickles further back in the sequence of steps

 Q[s4,left] starts changing only after the effect of the reward has reached s0

(i.e. after iteration 10 in the table)

10

CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

0)00*9.00(10],[0 rightsQ

1)10*9.01(11],[1 upCarefulsQ

+ 10

-100

-1 -1

-1

-1

-1 -1

1)10*9.01(11],[3 upCarefulsQ

9)010*9.00(10],[

],[])',[max9.0((],[],[

5

54
'

55

LeftsQ

LeftsQasQrLeftsQLeftsQ
a

k

10)100*9.010(110],[4 LeftsQ

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=2

New evidence is given
much more weight
than original estimate

Example (Fixed α=1)
 First iteration same as before, let’s look at the second

11
CPSC 422, Lecture 8

]),[])','[max((],[],[
'

asQasQrasQasQ
a

0)00*9.00(10],[0 rightsQ

1)10*9.01(11],[1 upCarefulsQ

+ 10

-100

-1 -1

-1

-1

-1 -1

1.7)19*9.01(11],[

],[])',[max9.0((],[],[

3

35
'

33

upCarefulsQ

upCarefulsQasQrupCarefulsQupCarefulsQ
a

k

9)910*9.00(19],[5 LeftsQ

10)100*9.010(110],[4 LeftsQ

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 9

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=3

Same here

No change from previous
iteration, as all the reward
from the step ahead was
included there

12

CPSC 422, Lecture 8

Comparing fixed α (top) and variable α (bottom)

Fixed α generates faster update:

all states see some effect of the
positive reward from <s4, left> by
the 5th iteration

Each update is much larger

Gets very close to final numbers by
iteration 40, while with variable α
still not there by iteration 107

However:

Q-learning with fixed α is not

guaranteed to converge

13
CPSC 422, Lecture 8

On the approximation…

]),[])','[max((],[],[
'

asQasQrasQasQ
a

'

'
)','(max),|'()(),(

s
a

asQassPs R asQ

True relation between
Q(s.a) and Q(s’a’)

Q-learning
approximation based on
each individual
experience <s, a, r, s’>

14 CPSC 422, Lecture 8

A. There is positive reward in most states

B. Q-learning tries each action an
unbounded number of times

C. The transition model is not sparse

 For the approximation to work…..

Why approximations work…

 Way to get around the missing transition model and reward
model

 Aren’t we in danger of using data coming from unlikely
transition to make incorrect adjustments?

 No, as long as Q-learning tries each action an unbounded
number of times

 Frequency of updates reflects transition model, P(s’|a,s)

]),[])','[max((],[],[
'

asQasQrasQasQ
a

'

'
)','(max),|'()(),(

s
a

asQassPs R asQ

True relation between
Q(s.a) and Q(s’a’)

Q-learning
approximation based on
each individual
experience <s, a, s’>

15 CPSC 422, Lecture 8

CPSC 422, Lecture 8 16

Lecture Overview

Finish Q-learning

• Algorithm

• Example

• Exploration vs. Exploitation

What Does Q-Learning learn

 Does Q-learning gives the agent an optimal policy?

CPSC 422, Lecture 8 17

Q values
s0 s1 … sk

a0 Q[s0,a0] Q[s1,a0] …. Q[sk,a0]

a1 Q[s0,a1] Q[s1,a1] … Q[sk,a1]

… … … …. …

an Q[s0,an] Q[s1,an] …. Q[sk,an]

CPSC 422, Lecture 8 18

Exploration vs. Exploitation

 Q-learning does not explicitly tell the agent what to do

• just computes a Q-function Q[s,a] that allows the agent to see, for every
state, which is the action with the highest expected reward

 Given a Q-function the agent can :

• Exploit the knowledge accumulated so far, and chose the action
that maximizes Q[s,a] in a given state (greedy behavior)

• Explore new actions, hoping to improve its estimate of the optimal
Q-function, i.e. *do not chose* the action suggested by the current
Q[s,a]

CPSC 422, Lecture 8 19

Exploration vs. Exploitation

 When to explore and when the exploit?

1. Never exploring may lead to being stuck in a suboptimal course of
actions

2. Exploring too much is a waste of the knowledge accumulated via
experience

CPSC 422, Lecture 8 20

A. Only (1) is true B. Only (2) is true

C. Both are true D. Both are false

Exploration vs. Exploitation

 When to explore and when the exploit?

• Never exploring may lead to being stuck in a suboptimal course of
actions

• Exploring too much is a waste of the knowledge accumulated via
experience

 Must find the right compromise

CPSC 422, Lecture 8 21

Exploration Strategies

 Hard to come up with an optimal exploration policy (problem

is widely studied in statistical decision theory)

 But intuitively, any such strategy should be greedy in the

limit of infinite exploration (GLIE), i.e.

• Choose the predicted best action in the limit

• Try each action an unbounded number of times

• We will look at two exploration strategies

• ε-greedy

• soft-max

CPSC 422, Lecture 8 23

ε-greedy

 Choose a random action with probability ε and choose

best action with probability 1- ε

 First GLIE condition (try every action an unbounded

number of times) is satisfied via the ε random selection

 What about second condition?

• Select predicted best action in the limit.

 reduce ε overtime!

CPSC 422, Lecture 8 24

Soft-Max

 Takes into account improvement in estimates of expected

reward function Q[s,a]

• Choose action a in state s with a probability proportional to current
estimate of Q[s,a]

/],[

/],[

a

asQ

asQ

e

e

 τ (tau) in the formula above influences how randomly actions

should be chosen

• if τ is high, the exponentials approach 1, the fraction approaches
1/(number of actions), and each action has approximately the same
probability of being chosen (exploration or exploitation?)

• as τ → 0, the exponential with the highest Q[s,a] dominates, and the
current best action is always chosen (exploration or exploitation?)

CPSC 422, Lecture 8 25

],[

],[

a

asQ

asQ

e

e

CPSC 422, Lecture 8 Slide 26

Learning Goals for today’s class

You can:

• Explain, trace and implement Q-learning

• Describe and compare techniques to combine exploration

with exploitation

CPSC 422, Lecture 8 Slide 27

TODO for Mon

• Carefully read : A Markov decision process
approach to multi-category patient scheduling in
a diagnostic facility, Artificial Intelligence in
Medicine Journal, 2011

• Follow instructions on course WebPage

<Readings>

• Keep working on assignment-1 (due on Wed)

Overview (NOT FOR 422)

 Introduction

 Q-learning

 Exploration vs. Exploitation

 Evaluating RL algorithms

 On-Policy Learning: SARSA

 Model-based Q-learning

CPSC 422, Lecture 8 28

Learning before vs. during deployment

 As we saw earlier, there are two possible modus operandi for our

learning agents

• act in the environment to learn how it works:

 first learn an optimal policy, then use this policy to act (there is a
learning phase before deployment)

• Learn as you go:

 start operating in the environment right away and learn from actions
(learning happens during deployment)

 If there is time to learn before deployment, the agent should try to

do its best to learn as much as possible about the environment

• even engage in locally suboptimal behaviors, because this will guarantee
reaching an optimal policy in the long run

 If learning while “at work”, suboptimal behaviors could be costly
CPSC 422, Lecture 8 29

Example

 Consider, for instance, our sample grid game:

• the optimal policy is to go up in S0

• But if the agent includes some exploration in its
policy (e.g. selects 20% of its actions randomly),
exploring in S2 could be dangerous because it may
cause hitting the -100 wall

• No big deal if the agent is not deployed yet, but not
ideal otherwise

+ 10

-100

-1 -1

-1

-1

-1 -1

 Q-learning would not detect this problem

• It does off-policy learning, i.e., it focuses on the optimal
policy

 On-policy learning addresses this problem

CPSC 422, Lecture 8 30

On-policy learning: SARSA

 On-policy learning learns the value of the policy being followed.

• e.g., act greedily 80% of the time and act randomly 20% of the time

• Better to be aware of the consequences of exploration has it happens, and
avoid outcomes that are too costly while acting, rather than looking for the
true optimal policy

 SARSA

• So called because it uses <state, action, reward, state, action> experiences
rather than the <state, action, reward, state> used by Q-learning

• Instead of looking for the best action at every step, it evaluates the actions
suggested by the current policy

• Uses this info to revise it

CPSC 422, Lecture 8 31

On-policy learning: SARSA

 Given an experience <s,a,r,s’,a’>, SARSA updates Q[s,a] as

follows

]),[])','[((],[],[asQasQrasQasQ

What’s different from Q-learning?

CPSC 422, Lecture 8 32

On-policy learning: SARSA

 Given an experience <s ,a, r, s’, a’>, SARSA updates Q[s,a] as

follows

]),[])','[((],[],[asQasQrasQasQ

 While Q-learning was using

 There is no more MAX operator in the equation, there is instead

the Q-value of the action suggested by the policy

]),[])','[max((],[],[
'

asQasQrasQasQ
a

CPSC 422, Lecture 8 33

On-policy learning: SARSA

 Does SARSA remind you of any other algorithm we have seen

before?

CPSC 422, Lecture 8 34

Policy Iteration
 Algorithm

• π ← an arbitrary initial policy, U ← A vector of utility values, initially 0

• 2. Repeat until no change in π

(a) Compute new utilities given π and current U (policy evaluation)

(b) Update π as if utilities were correct (policy improvement)

'

)'()'),(,()()(
s

i sUsssTs R s U

'

''

)'()',,(maxarg)(then

)'()'),(,()'()',,(max

sFor

sa
i

s

i

s
a

sUsasTs

sUsssT sUsasTIf

i

Expected value of following
current пi from s

Expected value of following
another action in s

Policy
Improvement

 step

CPSC 422, Lecture 8 35

]),[]','[(],[],[asQasQrasQasQ

0)00*9.00(10],[

]);,[],[9.0(],[],[

0

0100

rightsQ

rightsQUpCarefulsQrrightsQrightsQ k

1)00*9.01(10],[

]);,[],[9.0(],[],[

1

1311

upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ k

+ 10

-100

-1 -1

-1

-1

-1 -1

1)00*9.01(10],[

]);,[],[9.0(],[],[

3

3533

upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ k

0)00*9.00(10],[

]);,[],[9.0(],[],[

5

5455

LeftsQ

LeftsQleftsQrLeftsQLeftsQ k

10)00*9.010(10],[

]);,[],[9.0(],[],[

4

4044

LeftsQ

LeftsQRightsQrLeftsQLeftsQ k

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 0 0 0 0 0

Left 0 0 0 0 0 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=1

Only immediate rewards
are included in the update,

as with Q-learning

CPSC 422, Lecture 8 36

]),[]','[(],[],[asQasQrasQasQ

9.0)0)1(*9.00(2/10],[

]);,[],[9.0(],[],[

0

0100

rightsQ

rightsQUpCarefulsQrrightsQrightsQ k

45.1)1)1(*9.01(2/11],[

]);,[],[9.0(],[],[

1

1311

upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ k

+ 10

-100

-1 -1

-1

-1

-1 -1

1)10*9.01(2/11],[

]);,[],[9.0(],[],[

3

3533

upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ k

5.4)010*9.00(2/10],[

]);,[],[9.0(],[],[

5

5455

LeftsQ

LeftsQleftsQrLeftsQLeftsQ k

10)100*9.010(2/110],[

]);,[],[9.0(],[],[

4

4044

LeftsQ

LeftsQRightsQrLeftsQLeftsQ k

k=1 k=2
Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

SARSA backs up the
expected reward of the next
action, rather than the max
expected reward

CPSC 422, Lecture 8 37

Comparing SARSA and Q-learning

 For the little 6-states world

 Policy learned by Q-learning 80% greedy is to go up in s0 to

reach s4 quickly and get the big +10 reward

+ 10

-100

-1 -1

-1

-1

-1 -1

CPSC 422, Lecture 8 38

Comparing SARSA and Q-learning

 Policy learned by SARSA 80% greedy is to go left in s0

 Safer because avoid the chance of getting the -100 reward in s2

 but non-optimal => lower q-values

+ 10

-100

-1 -1

-1

-1

-1 -1

CPSC 422, Lecture 8 39

SARSA Algorithm

This could be, for instance any ε-
greedy strategy:
- Choose random ε times, and max
the rest

This could be, for instance any ε-
greedy strategy:
-Choose random ε times, and max
the rest

If the random step is chosen
here, and has a bad negative
reward, this will affect the
value of Q[s,a].

Next time in s, a’ may no
longer be the action selected
because of its lowered Q
value

CPSC 422, Lecture 8 40

Another Example
 Gridworld with:

• Deterministic actions up, down, left, right

• Start from S and arrive at G

• Reward is -1 for all transitions, except those into the region marked “Cliff”

Falling into the cliff causes the agent to be sent back to start: r = -100

CPSC 422, Lecture 8 41

Another Example

 Because of negative reward for every step taken, the optimal

policy over the four standard actions is to take the shortest path

along the cliff

 But if the agents adopt an ε-greedy action selection strategy with

ε=0.1, walking along the cliff is dangerous

• The optimal path that considers exploration is to go around as far as
possible from the cliff

CPSC 422, Lecture 8 42

Q-learning vs. SARSA

 Q-learning learns the optimal policy, but because it does so

without taking exploration into account, it does not do so well

while the agent is exploring

• It occasionally falls into the cliff, so its reward per episode is not that great

 SARSA has better on-line performance (reward per episode),

because it learns to stay away from the cliff while exploring

• But note that if ε→0, SARSA and Q-learning would asymptotically
converge to the optimal policy CPSC 422, Lecture 8 43

Problem with Model-free methods

 Q-learning and SARSA are model-free methods

 What does this mean?

CPSC 422, Lecture 8 44

Problems With Model-free Methods

 Q-learning and SARSA are model-free methods

• They do not need to learn the transition and/or reward model, they are
implicitly taken into account via experiences

 Sounds handy, but there is a main disadvantage:

• How often does the agent get to update its Q-estimates?

CPSC 422, Lecture 8 45

Problems with Model-free Methods

 Q-learning and SARSA are model-free methods

• They do not need to learn the transition and/or reward model, they are
implicitly taken into account via experiences

 Sounds handy, but there is a main disadvantage:

• How often does the agent get to update its Q-estimates?

• Only after a new experience comes in

• Great if the agent acts very frequently, not so great if actions are sparse,
because it wastes computation time

CPSC 422, Lecture 8 46

Model-based methods
 Idea

• learn the MDP and interleave acting and planning.

 After each experience,

• update probabilities and the reward,

• do some steps of value iteration (asynchronous) to get better estimates of
state utilities U(s) given the current model and reward function

• Remember that there is the following link between Q values and utility
values

 (1)),(max)(saQsU
a

(2))'(),|'()(),(
'

s

sUassPs R asQ

'

'
)','(max),|'()(),(

s
a

asQassPs R asQ

CPSC 422, Lecture 8 47

VI algorithm

CPSC 422, Lecture 8 48

Asynchronous Value Iteration

 The “basic” version of value iteration applies the Bellman update to

all states at every iteration

 This is in fact not necessary

• On each iteration we can apply the update only to a chosen subset of states

• Given certain conditions on the value function used to initialize the process,
asynchronous value iteration converges to an optimal policy

 Main advantage

• one can design heuristics that allow the algorithm to concentrate on states
that are likely to belong to the optimal policy

• Much faster convergence

CPSC 422, Lecture 8 49

Asynchronous VI algorithm

for some

CPSC 422, Lecture 8 50

Model-based RL algorithm

Model Based Reinfortcement Learner
inputs:
S is a set of states, A is a set of actions, γ the discount, c is a prior count
internal state:
real array Q[S,A], R[S,A, S’]
integer array T[S,A, S’]
previous state s
previous action a

CPSC 422, Lecture 8 51

Counts of events when action
a performed in s generated s’

TD-based estimate of R(s,a,s’)

Asynchronous value
iteration steps

Frequency of transition
from s1 to s2 via a1

Why is the reward
inside the summation?

What is this c for?

CPSC 422, Lecture 8 52

Discussion

Which Q values should asyncronous VI update?

• At least s in which the action was generated

• Then either select states randomly, or

• States that are likely to get their Q-values changed because
they can reach states with Q-values that have changed the
most

How many steps of asynchronous value-iteration to

perform?

CPSC 422, Lecture 8 53

Discussion

Which states to update?

• At least s in which the action was generated

• Then either select states randomly, or

• States that are likely to get their Q-values changed because
they can reach states with Q-values that have changed the
most

How many steps of asynchronous value-iteration to

perform?

• As many as can be done before having to act again

CPSC 422, Lecture 8 54

Q-learning vs. Model-based

 Is it better to learn a model and a utility function or an action

value function with no model?

• Still an open-question

 Model-based approaches require less data to learn well, but they

can be computationally more expensive (time per iteration)

 Q-learning takes longer because it does not enforce consistency

among Q-values via the model

• Especially true when the environment becomes more complex

• In games such as chess and backgammon, model-based approaches have
been more successful that q-learning methods

 Cost/ease of acting needs to be factored in

CPSC 422, Lecture 8 55

Reinforcement Learning

CPSC 422, Lecture 8 56

Overview

 Introduction

 Q-learning

 Exploration Exploitation

 Evaluating RL algorithms

 On-Policy learning: SARSA

 Model-based Q-learning

CPSC 422, Lecture 8 57

Overview

 Introduction

 Q-learning

 Exploration vs. Exploitation

 Evaluating RL algorithms

 On-Policy Learning: SARSA

 Model-based Q-learning

CPSC 422, Lecture 8 58

Evaluating RL Algorithms

 Two possible measures

• Quality of the optimal policy

• Reward received while looking for the policy

 If there is a lot of time for learning before the agent is deployed,

then quality of the learned policy is the measure to consider

 If the agent has to learn while being deployed, it may not get to

the optimal policy for a along time

• Reward received while learning is the measure to look at, e.g, plot
cumulative reward as a function of number of steps

• One algorithm dominates another if its plot is consistently above

CPSC 422, Lecture 8 59

Evaluating RL Algorithms

 Plots for example 11.8 in textbook (p. 464), with

• Either fixed or variable α

• Different initial values for Q[s,a]

CPSC 422, Lecture 8 60

Evaluating RL Algorithms

 Lots of variability in each algorithm for different runs

• for fair comparison, run each algorithm several times and report average
behavior

 Relevant statistics of the plot

• Asymptotic slopes: how good the policy is after the algorithm stabilizes

• Plot minimum: how much reward must be sacrificed before starting to
gain (cost of learning)

• zero-crossing: how long it takes for the algorithm to recuperate its cost of
learning

CPSC 422, Lecture 8 61

