Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 8

Sep, 25, 2015

CPSC 422, Lecture 8 Slide 1

Lecture Overview

Finish Q-learning

 Algorithm Summary
 Example

» Exploration vs. Exploitation

CPSC 422, Lecture 8

QtilA] Sl S, QJ(C:SIA} <
(

S S
9 | /, |
| §> Sarf
i / .
\ o . Q(53\> K‘+Km9xQ(S 35 (
Vel =
(s) (S 0t 3
ML /}J N]
maxQ<g 9\3
(}A ,t"‘ A (v& - At">

QCS& (s&\m,{(ngwabea Q(s&\>

CPSC 422, Lecture 8 Slide 3

Example

» Six possible states <s,,..,s:>

-1 -1
> 4 actions: '
, | | S A S 5 1
« UpCareful: moves one tile up unless there is .
wall, in which case stays in same tile. Always
generates a penalty of -1
-100 1 ‘
o [eff:moves one tile left unless there is wall, i 52 53
which case
v stays in same tile if in sy ors,
vissenttos,ifins, 1 SU‘ 51 (1
* Right:moves one tile right unless there is wall, ‘

in which case stays in same tile

« Up:0.8 goes up unless there is a wall, 0.1 like
Left, 0.1 like Right

Reward Model: CPSC 422, Lecture 8

* -1 for doing UpCareful

* Negative reward when hitting a wall, as marked on the picture A

Example

» The agent knows about the 6 states and 4

actions

» Can perform an action, fully observe its
state and the reward it gets

» Does not know how the states are
configured, nor what the actions do

* no transition model, nor reward model

CPSC 422, Lecture 8

—F 1
54 35 -1
1 SU 51 -1

Example (variable a,)

» Suppose that in the simple world described earlier, the
agent has the following sequence of experiences

<s,, right, O, s,, upCareful, -1, s;, upCareful, -1, s, left, O, s,, left, 10, s>
» And repeats it Atimes (not a good behavior for a Q-learning
agent, but good for didactic purposes)
» Table shows the first 3 iterations of Q-learning when

« Q[s,a] is initialized to O for every a and s
« o=1/k,y=0.9

[teration Qlso.right] Q[s1.upCare| Qlss.upCare| Qlss,left] Qlsa,left]
| () -1 - () 10
2 0 -1 -1 4.5 10
3 0 -1 0.35 6.0 10

« For full demo, see http://artint.info/demos/rl/tGame.html
CPSC 422, Lecture 8

'5:|‘-'{}-f’f£i’r‘[i’f- U|~‘-'1|- upCareful. —1 .|s:;;|r:;:chircfﬁ:f. — 1455, left, U..sqihf';‘}‘. 10.5p) I E(grﬁq_é 55 53
Qls.a] < Q[s,a]+a((r +y max Q[s',a']) —Q[s, a]) ik
Q[s.a] So | S | So | S3 | Sq| Ss F100] 52 Sf [1]
k_l upCareful 0] 0] O O [0 O
a Left olo|[O0] 0]|0] O L
Right [0 0[]0][0 0|0 [1]Sg [89t
Up 0/ 0]0]O0]O0O]O

Q[s,, right] «— Q[s,, right] + ¢, ((r +0.9 mgx Q[s,,a']) —Q[s,, right]);
Q[s,, right] «

Q[s,, upCareful] <~ Q[s,,upCareful]+ ¢, ((r +0.9maxQ[s,,a']) - Q[s,, upCareful];
Q[s,,upCareful] «

Q[s;, upCareful] < Q[s,, upCareful] + ¢, ((r +0.9max Q[s;,a']) — Q[s,, upCareful];
Q[s;,upCareful] «

Only immediate rewards
are included in the update

In this first pass

Q[s;, Left] «— Q[s;, Left]+ e, ((r+0.9 mgx Q[s,,a']) —Q[s;, Left];
Q[s;, Left] < 0+1(0+0.9*0-0)=0

Q[s,, Left] < Q[s,, Left]+ ¢, ((r+0.9 mgx Q[s,.a']) —Q[s,, Left];

7
Q[s,, Left] < 0+1(10+0.9%*0—0) =10

CPSC 422, Lecture 8

pyiy

'i]ﬁ'{;..f'fﬁfhf. 0, fiy upCareful. — 1 .|e.'_:|u;:v{.“a:n-{.?ﬁ,;‘] 95, left. U--Hihfﬁ‘. 10.50) | ECIFSq_A 55 o
Qls,a] < Q[s,a]+a((r +y max Q[s',a’]) - Qls, a]) 1

-1
Qls.a] So | S | S, | S5 |Si] S fo0] Sp | Sg b

k 9 upCareful ol-1]0}|-1]0] O
= Left o [o]o] o i]o0 =
Right [0 0[]0][0 0|0 [1]Sg [89t

Up 0|]0]0| O0O]O] O

Q[s,, right] < Q[s,, right]+ «, ((r +0.9 mgx Q[s,,a']) —QIs,, right]);
Q[s,, right] «-0+1/2(0+0.9*0-0)=0

Q[s,,upCareful] <- Q[s,,upCareful]+, ((r + 0.9maxQ[s;,a']) - Q[s,,upCareful] =
Q[s,,upCareful] <~ -1+1/2(-1+0.9*0+1)=-1

Q[s,, upCareful] < Q[s,, upCareful] + ¢, ((r +0.9max Q[s;,a']) — Q[s,, upCareful] =
Q[s;,upCareful] «- -1+1/2(-1+0.9*0+1) =-1

1 step backup from

QIS Left] « Q[s,, Left]+ o ((r +0.9max Q[s,,a']) — Q[ss, Left] = previous positive
! reward in s4
Qls, Left] «

Q[S41 Leﬂ] <~ Q[S41 Left] + ak ((r + 09 ma,X Q[So’ a']) - Q[S41 Leﬁ:] -
Q[s,, Left] «-10+1(10+0.9*0-10) =10 CPSC 422, Lecture 8

-:Ifla'.:;.. right.(, fiy upCareful. — 1 .|a'_:|r:;:v{.“a:m-jﬁ:f. —1 195 left, 0, .uihff}‘. 10.s0) |

Qls,a] <~ QIs,a]+a((r+y max Q[s',a’]) - Qls, a])

Qls.a] So | S1 | S | Sy [Sa] S

upCareful O |-110 03|0]| 0 |

k=3 Left 0 oo] o0 [10]6]
Right 0]o0lo] oo o
Up 0]o0]0] 00| 0

Q[s,, right] < Q[s,, right]+ «, ((r +0.9 mgx Q[s,,a']) —QIs,, right]);
Q[s,, right] «-0+1/3(0+0.9*0-0) =0

Q[s,,upCareful] <- Q[s,,upCareful]+, ((r + 0.9maxQ[s;,a']) - Q[s,,upCareful] =
Q[s,,upCareful] <~ -1+1/3(-1+0.9*0+1) =-1

Q[s,, upCareful] < Q[s,, upCareful] + ¢, ((r +0.9max Q[s;,a']) — Q[s,, upCareful] =
Q[s;,upCareful] «— -1+1/3(-1+0.9*4.5+1) =0.35

Ry -y
mﬁld'ss) 53

T
[i00] So Sf L]

1] Sp -’51 1]

The effect of
the positive
reward In s4 is
felt two steps
earlier at the
3rd jteration

Q[S;, Left] «— Q[s;, Left]+ e, ((r+0.9 mgx Q[s,,a']) —Q[s, Left]=
Q[S;, Left] «4.5+1/3(0+0.9*10—-4.5) =6

Q[s,, Left] < Q[s,, Left]+ ¢, ((r+0.9 m;';\x Q[s,.a']) —Q[s,, Left] =

Q[s,, Left] «-10+1/3(10+0.9*0-10) =10 CPSC 422, Lecture 8

Example (variable a,)

[teration Qlso.right] Qls1.upCare| Qlss.upCare| Qlss.left| Qlsa,left] Se
1 0 -1 -1 0 10
2 0 -1 -1 4.5 10
3 0 -1 0.35 6.0 10
4 0 -0.92 1.36 6.75 10
(10— 10.03) 0.51 4 8.1 10
100 2.54 4.12 6.82 0.5 11.34
1000 4.63 5.93 8.46 11.3 3.
10000 6.08 7.39 9.97 12.83 14.9
1 00000 1.27 8.98 11.16 14.02 16.08
1000000 8.21 0.52 12.1 14.96 17.02
10000000 8.96 10.27 12.85 15.71 17.777
@ 11.85 13.16 15.74 18.6 20.66

As the number of iterations increases, the effect of the positive reward
achieved by moving left in s, trickles further back in the sequence of steps

Q[s,,left] starts changing only after the effect of the reward has reached s,
(i.e. after iteration 10 in the table) -

10
CPSC 422, Lecture 8

Example (Fixed a=7)

> First iteration same as before, let’s look at the second

F1] 1]

(so.right. 0. 51 upCareful. — 1 .53, upCareful. — 1 ys5, left. 0. sqyleft, 10, sg) Eérgég -
| P P3) i i | S Sg L]
Qls,a] « Q[s, a] + a((r +y maxQs',a']) ~Qls, a]) i

Qls.al So | S1 | Sp | S3 | Sa| Ss

upCareful O-1]0 110 0

k=2 Left 00 0| 010/ o0
Right 0]lolo| oo o

Up 0]o|lo| oo o

Q[s,, right] «-0+1(0+0.9*0-0)=0

Q[s,,upCareful] < -1+1(-1+0.9*0+1) =-1
Q[s;,upCareful] <~ -1+1(-1+0.9*0+1) =-1

Q[S;, Left] «— Q[s;, Left]+ e, ((r+0.9 max Q[s,,a']) —QIs, Left] =

Q[s., Left] <~ 0+1(0+0.9*10-0) =9

4

[100] So Sf FL]

1] Sp -'51 FL]

New evidence is given
much more weight
than original estimate

Q[s,, Left] <10 +1(10+0.9*0—10) =10

11

CPSC 422, Lecture 8

'il'&'{}.. right. 0, fiy upCareful, — 1 .|e.'_:|u;:v{.“a:n-{.?ﬁ,;‘ —Lyss, left. 0. -‘*’4|ftff}‘. 10.50) | E(IFS4A 55 o
Qls, a] <—Q[s,a]+a((r+7/m3x Q[s',a'])-Q[s.a]) s
1
Qls.a] So | S | S, | S5 |Si] S fo0] Sp | Sg b
k 3 upCareful ol-1]0}|-1]0] O
— Left oo lo| o [10] 9
1
Right [0 0[]0][0 0|0 1]1Sg [S9 &
Up 0|O0OJO] O O] O

Q[s,, right] «-0+1(0+0.9*0-0)=0
Q[s,,upCareful] <~ -1+1(-1+0.9*0+1) =-1

Q[s;, upCareful] <- Q[s,, upCareful]+« ((r + 0.9 maxQ[s;,a']) — Q[s,, upCareful] =

Same here

Q[s;,upCareful] <~ -1+1(-1+0.9*9+1)=7.1

Q[s., Left] < 9+1(0+0.9%10-9) =9

Q[s,, Left] «-10+1(10+0.9*0-10) =10

CPSC 422, Lecture 8

No change from previous
iteration, as all the reward
from the step ahead was
included there

12

Comparing fixed a (fop) and variable a (botfom)

lteration Qlso.right] ~ Qls1.upCare] Q[s3,upCare| Qlss,left] Qlsa. left]

I 0 -1 -1 0 10

2 0 -1 -1 9 10

3 0 -1 1.1 9 10

4 0 5.39 7.1 9 10

5 4.85 5.39 7.1 9 14.37
6 4.85 5.39 1.1 12.93 14.37

10 172 8.57 10.64 [5.25 16.94
20 10.4] 12.22 14.69 17.43 19.37
30 [1.55 12.83 15.3 18.35 20.39
40 [1.74 13.09 15.66 [8.51 20.57
o0 [1.85 13.16 15.74 18.6 20.66
Iteration Qlsp.right| Q[si.upCare| Qlsy.upCare| Qlss.left| Qlsy.left]
1 0 -1 -1 0 10
2 0 -1 -1 4.3 10
3 0 - 0.33 6.0 10
4 0 -0.92] 136 675 10
10 0.03 0.51 4 8.1 10
100 2.54 4.12 6.82 9.5 11.34
1000 4.63 5.93 8.46 1.3 13.4
10000 6.08 7.39 9.97 12,83 14.9
100000 1.27 8.58 11.16 14.02 16.08
1000000 8.21 9.52 12.1 14.96 17.02
10000000 8.96 10.27 12.85 15.71 17.77
co [1.85 13.16 15,74 18.6 20.66

Fixed a generates faster update:

all states see some effect of the
positive reward from <s4, left> by
the 5t iteration

Each update is much larger

Gets very close to final numbers by
iteration 40, while with variable a
still not there by iteration 107

However:

Q-learning with fixed ais not
guaranteed to converge

13
CPSC 422, Lecture 8

On the approximation...

True relation between

Q(s.a) and Q(s’a’)

/
Q(s.a) - R(s)wzmmgxcz(s:a')g

approximation based on
each individual
experience <s, a, 7, s >

Qls, a] « Q[s, a] + ((r + y max Q[s',a'T) — Q[s, al),) Q-leaming
N VYL

» For the approximation to work.....

A. There is positive reward in most states

B. Q-learning tries each action an
unbounded number of times

C. The transition model is not sparse

Why approximations work...

True relation between

Q(s.a) and Q(s’a’)

/
Q(s.a) - R(s)+yzm mng(s:a')Q

approximation based on
each individual
experience <s, a, s >

Qls, a] « Q[s, al + ((r + y max Q[s',a'T) — Q[s, al),/ Q-leaming
N R

» Way to get around the missing transition model and reward
model

» Aren’t we in danger of using data coming from unlikely
transition to make incorrect adjustments?

» No, as long as Q-learning tries each action an unbounded
number of times

» Frequency of updates reflects transition model, P(s/a,s)

Lecture Overview

Finish Q-learning
 Algorithm
 Example

* Exploration vs. Exploitation

CPSC 422, Lecture 8

16

What Does Q-Learning learn

» Does Q-learning gives the agent an optimal policy?

CPSC 422, Lecture 8

17

Q values

So Sy Sk
dg Q[Sp.aq] Q[s;,a] Q[Sk.aq]
dy Q[Sp.a] Q[s;,a] Q[Sk.a]
a'n Q[So1an] Q[Slian] Q[Sk’an]

CPSC 422, Lecture 8

18

Exploration vs. Exploitation

» Q-learning does not explicitly tell the agent what to do

« just computes a Q-function QJ[s,a] that allows the agent to see, for every
state, which is the action with the highest expected reward

» Given a Q-function the agent can :

« Exploit the knowledge accumulated so far, and chose the action
that maximizes Q[s,a] in a given state (greedy behavior)

« Explore new actions, hoping to improve its estimate of the optimal
Q-function, i.e. *do not chose* the action suggested by the current

Q[s.a]

CPSC 422, Lecture 8 19

Exploration vs. Exploitation

» When to explore and when the exploit?

1.

Never exploring may lead to being stuck in a suboptimal course of
actions

Exploring too much is a waste of the knowledge accumulated via
experience

A. Only (1) is true B. Only (2) is true

C. Both are true D. Both are false

CPSC 422, Lecture 8 20

Exploration vs. Exploitation

» When to explore and when the exploit?

* Never exploring may lead to being stuck in a suboptimal course of
actions

« Exploring too much is a waste of the knowledge accumulated via
experience

» Must find the right compromise

CPSC 422, Lecture 8 21

Exploration Strategies

» Hard to come up with an optimal exploration policy (problem
IS widely studied in statistical decision theory)

» But intuitively, any such strategy should be greedy in the
limit of infinite exploration (GLIE), I.e.
Choose the predicted best action in the limit
« Try each action an unbounded number of times
« We will look at two exploration strategies
« g-greedy

soft-max

CPSC 422, Lecture 8 23

e-greedy

» Choose arandom action with probability € and choose
best action with probability 1- €

?(_V&MAOM 9C<|”\a vx) — E_
Pbest achom)= I-€

» First GLIE condition (try every action an unbounded
number of times) is satisfied via the € random selection

» What about second condition?

Select predicted best action in the limit.

> reduce g overtime!

CPSC 422, Lecture 8 24

/l /
BT (9&(»50\0 _\/HQV\S LA FORM
Yo - a¢
s¢ Soft-Max o DISTRIB .
c\o o seh o et d wa prob
» (Takes into account improvement in estimates of expected

eward function Q|s,a]

Choose action a in state s with a probability proportional to current
estimate of Q[s,a

Qls.a] > cl“*(o\\ei‘“gg;]/f
e~ o¥ N ?9" e’

ST e | S gQs Al
2 84\—\74:)(_:;

» 1 (tau) in the formula above influences how randomly actions
should be chosen

« [ftis high, the exponentials approach 1, the fraction approaches
1/(number of actions), and each action has approximately the same
probability of being chosen (exploration or exploitation?)

« as 1t — 0, the exponential with the highest Q[s,a] dominates, and the
current best action is always chosen (exploration or exploitation?)

CPSC 422, Lecture 8 25

X

Learning Goals for today’s class

>»YO0ou can:

« EXxplain, trace and implement Q-learning

« Describe and compare techniques to combine exploration
with exploitation

CPSC 422, Lecture 8 Slide 26

TODO for Mon

 Carefully read : A Markov decision process
approach to multi-category patient scheduling in
a diagnostic facility, Artificial Intelligence In
Medicine Journal, 2011

* Follow instructions on course WebPage
<Readings>

« Keep working on assignment-1 (due on Wed)

CPSC 422, Lecture 8 Slide 27

Overview (NOT FOR 422)

» Introduction

» Q-learning

» Exploration vs. Exploitation
» Evaluating RL algorithms

» On-Policy Learning: SARSA
» Model-based Q-learning

CPSC 422, Lecture 8

28

|_earning before vs. during deployment

» As we saw earlier, there are two possible modus operandi for our
learning agents

e act in the environment to learn how it works:

v first learn an optimal policy, then use this policy to act (there is a
learning phase before deployment)

e Learn as you go:

v' start operating in the environment right away and learn from actions
(learning happens during deployment)

> If there iIs time to learn before deployment, the agent should try to
do its best to learn as much as possible about the environment

 even engage in locally suboptimal behaviors, because this will guarantee
reaching an optimal policy in the long run

» If learning while “at work”,Cspg(l:)?zgtimalsbehaviors could be Costlzy

Lecture

Example

(1] 1]
» Consider, for instance, our sample grid game: FI0 S4 | Sg]
« the optimal policy istogoup in S,
- F1]
 But if the agent includes some exploration in its) S | 53
policy (e.g. selects 20% of its actions randomly),
exploring in S, could be dangerous because it may [1]8g | $4 1]
cause hitting the -100 wall

* No big deal if the agent is not deployed yet, but not
Ideal otherwise

» Q-learning would not detect this problem

« It does off-policy learning, i.e., it focuses on the optimal
policy

» On-policy learning addresses this problem

CPSC 422, Lecture 8 30

On-policy learning: SARSA
» On-policy learning learns the value of the policy being followed.

* e.g., act greedily 80% of the time and act randomly 20% of the time

« Better to be aware of the consequences of exploration has it happens, and
avoid outcomes that are too costly while acting, rather than looking for the
true optimal policy

» SARSA

» So called because it uses <state, action, reward, state, action> experiences
rather than the <state, action, reward, state> used by Q-learning

« Instead of looking for the best action at every step, it evaluates the actions
suggested by the current policy

« Uses this info to revise it

CPSC 422, Lecture 8 31

On-policy learning: SARSA

» Glven an experience <s,a,7s’,a’>, SARSA updates Q[s,a] as
follows

Qls.a] «-Q[s,a]+a((r +,Q[s,a’]) -Q[s,a])

What’s different from Q-learning?

CPSC 422, Lecture 8

32

On-policy learning: SARSA

» Glven an experience <s,a, r, s, a’™>, SARSA updates Q[s,a] as
follows

Qls.a] «-Q[s,a]+a((r +,Q[s,a’]) -Q[s,a])

» While Q-learning was using
Qls, a] - Q[s, a] +a((r +ymax Q[s',a’]) -Q[s, al)

» There is no more MAX operator in the equation, there is instead
the Q-value of the action suggested by the policy

CPSC 422, Lecture 8 33

On-policy learning: SARSA

» Does SARSA remind you of any other algorithm we have seen
before?

CPSC 422, Lecture 8 34

Policy Iteration
» Algorithm

e 7 < an arbitrary initial policy, U «— A vector of utility values, initially O
« 2. Repeat until no change in &t

(@) Compute new utilities given t and current U (policy evaluation)
U (s) = R(S)+7D T(s,7(s),sHU(s")

(b) Update = as if utilities were correct (policy improvement)

Expected value of following Expected value of following
another action in s current mi froms
For Vs W y
Policy If max > T(s,a,s) (s')> D T(s,7(s),sHU(s")
Improvement Y 5

step

then 7. (s) «<—argmax » T(s,a,s")U”" (s")
CP8C 422, L:ecture 8 35

'5:|‘-'{}-f’f£i’r‘;”-0|51-“I?Cﬁf’{f'ﬁrf]— I .|s:;:.r:;:vCﬁrcfﬁ:f.l— I .|.5'5.h{;‘}‘.IU..sqihf';‘}‘.llU.ﬁ;g} I E(Ijrsq-é 55 53
Qls,a] < Q[s,a]+a(r +Q[s',a']-Qls,a]) i
Qls.a] So | S | S, | S5 |Si] S fo0] Sp | Sg b
k_l upCareful 0 0 0 0 0 0
a Left olo|[O0] 0]|0] O = 0
Right [0 0[]0][0 0|0 [1]Sg [89t
Up oloJo] o0]o0o]|oO

QI[s,, right] «— Q[s,, right]+ &, (r +0.9Q[s,,UpCareful] - Q[s,, right]);
Q[s,, right] «

Q[s,, upCarfull] «— Q[s,,upCarfull]+ ¢, (r + 0.9Q[s;,UpCareful] - Q[s,, upCarfull]);
Q[s,,upCarfull] «

Q[s,, upCarfull] «— Q[s,,upCarfull]+ «, (r +0.9Q[s;, Left]—Q[s,, upCarfull]);
Q[s;,upCarfull] «- 0+1(-1+0.9*0-0) =-1

Only immediate rewards
Q[S;, Left] «— Q[s;, Left]+ «, (r +0.9Q[s,, left] - Q[s;, Left]); are included in the update,

Q[s., Left] <~ 0+1(0+0.9%0-0) =0 as with Q-learning

Q[s,, Left] «— Q[s,, Left]+ «, (r +0.9Q[s,, Right]-Q[s,, Left]);

Q[s,, Left] «— 0+1(10+0.9*0—0) =10 CPSC 422, Lecture 8 36

(1] f1]
lwo.richt.Ops eful, —1.153 “areful, —1yss. left.0.s4qleft, 10.5q) 1
._|a.g;..ng.*’zr.{_}|.a].u;:rCmc_fufl l.ls_,.r:;:v{.a:mﬁ:f.l I.l.s._ left IU uih_fr‘ IIU 50/ | E@E44J'55 F1]
Qls.a] < Qls,a] +a(r +)Q[s a1~ Qfs.al) i
100] S Sq I
Q[s.a] So | S1 | So | S3 | S4| Ss =72 f
k=2 upCareful | 0 | -1 | O | -1 | O] O
Left 0] 0]0] 0 |10] 0 1] S -’51 [
Right 0| 0] O 0O |0 O
Up 0|l 0] O 0O |0]|] O
Q[s,, right] <— Q[s,, right] + e, (r +0.9Q[s,,UpCareful] - Q[s,, right]); SARSA backs up the
ioht expected reward of the next
Q[S,, right] «— action, rather than the max
expected reward

Qls,, upCarfull] < Q[s,, upCarfull]+ e (r +0.9Q[s,, UpCareful] - Q[s,, upCarfull]);
Q[s,, upCarfull] «-

Q[s,, upCarfull] «— Q[s,,upCarfull]+ «, (r +0.9Q[s;, Left]—Q[s,, upCarfull]);
Q[s;,upCarfull] «—-1+1/2(-1+0.9*0+1) =-1

Q[S;, Left] «— Q[s;, Left]+ «, (r +0.9Q[s,, left] - Q[s;, Left]);
Q[s;, Left] «—0+1/2(0+0.9*10-0) =4.5

Q[s,, Left] < Q[s,, Left]+ e, (r +0.9Q[s,, Right]-Q[s,, Left]);
Qls,, Left] « 10+1/2(10 +0.9*0—10) =1§5¢ 422, Lecture 8 37

Comparing SARSA and Q-learning

> For the little 6-states world

» Policy learned by Q-learning 80% greedy isto go up in s, to
reach s, quickly and get the big +10 reward

[teration Q|sg, right| Qls;,upC| Qlss, upC| Q|ss,left] Qlsy, left]

00 19.5 21.14 24.08 27.87 30.97

]

F S4 | Sg

F100] 52 53 1]

i
1]Sg | Sq B

CPSC'422, Lecture 8 38

Comparing SARSA and Q-learning

» Policy learned by SARSA 80% greedy Is to go left in s,
» Safer because avoid the chance of getting the -100 reward in s,

» but non-optimal => lower g-values

[teration Qlso, right] Qls1, upC] Q|s3, upC| Qlss,left] Qlsy,left]
00 9.2 10.1 12.7 15.7 18.0

]

E(IJ] 54 55 F1]

F100] 52 53 1]

CPSC'422, Lecture 8 39

SARSA Algorithm

This could be, for instance any -

hegl.n. o o greedy strategy:
initialize Q[S, A] arbitrarily -Choose random g times, and max
observe current state s the rest

end

select action a using a policy based on @
repeat forever:
carry out an action a
observe reward r and state s’
select action a’ using a policy based on @
QRls.a] — Q[s.a]l + a(r +9Q[s".a] — Q[s.a])
s+« s’
a—a:

end-repeat

CPSC 422, Lecture 8

If the random step is chosen
here, and has a bad negative
reward, this will affect the
value of QJs,a].

Next time in s, a’ may no
longer be the action selected
because of its lowered Q
value

40

Another Example

> Gridworld with:

« Deterministic actions up, down, left, right

e Start from S and arrive at G

» Reward is -1 for all transitions, except those into the region marked “Cliff”

v/ Falling into the cliff causes the agent to be sent back to start: = -100

e —1 l

CPSC 422, Lecture 8

safe path

gptimal path

41

Another Example

,--_1"f —> safe path
| N optimal patn
g The Clitt G
A

— e
[| il

» Because of negative reward for every step taken, the optimal
policy over the four standard actions is to take the shortest path
along the cliff

» But If the agents adopt an e-greedy action selection strategy with
£=0.1, walking along the cliff is dangerous

» The optimal path that considers exploration is to go around as far as
possible from the cliff

CPSC 422, Lecture 8 42

Q-learning vs. SARSA

]] T []
E R 101) 4ner S0
Episodes

» Q-learning learns the optimal policy, but because it does so
without taking exploration into account, it does not do so well
while the agent is exploring

« It occasionally falls into the cliff, so its reward per episode is not that great

» SARSA has better on-line performance (reward per episode),
because it learns to stay away from the cliff while exploring

» But note that if e—>0, SARSA and Q-learning would asymptotically
converge to the optimal poRE§c 422, Lecture 8 43

Problem with Model-free methods

» Q-learning and SARSA are model-free methods

What does this mean?

CPSC 422, Lecture 8

44

Problems With Model-free Methods

» Q-learning and SARSA are model-free methods

» They do not need to learn the transition and/or reward model, they are
implicitly taken into account via experiences

» Sounds handy, but there is a main disadvantage:

« How often does the agent get to update its Q-estimates?

CPSC 422, Lecture 8 45

Problems with Model-free Methods

» Q-learning and SARSA are model-free methods

» They do not need to learn the transition and/or reward model, they are
implicitly taken into account via experiences

» Sounds handy, but there is a main disadvantage:
« How often does the agent get to update its Q-estimates?

« Only after a new experience comes in

« Great if the agent acts very frequently, not so great if actions are sparse,
because it wastes computation time

CPSC 422, Lecture 8 46

Model-based methods
> ldea

 |earn the MDP and interleave acting and planning.

» After each experience,
 update probabilities and the reward,

 do some steps of value iteration (asynchronous) to get better estimates of
state utilities U(s) given the current model and reward function

« Remember that there is the following link between Q values and utility
values

U(s)=maxQ(as) (1)

Q(s,a) = R(S)+VZ P(s's,a)U(s’) (2)

Q(s,a) = R(s)+yD>_P(s'|s.a) max Q(s',a’)

S
CPSC 422, Lecture 8 47

V1 algorithm

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states .S, actions A(s), transition model P(s’| s, a),
rewards R(s), discount v
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in .S, initially zero
d, the maximum change in the utility of any state in an iteration

repeat
U—U'":60
for each state s in S do

U'[s] — R(s) + v max P(s

agA(s) &
if |U’[s] — Uls]| > dthend—|U'[s] — Uld]|
until 6 < €(1 —75)/~
return U

s,a) Uls']

CPSC 422, Lecture 8 48

Asynchronous Value lteration

» The “basic” version of value iteration applies the Bellman update to
all states at every Iiteration
» This Is In fact not necessary
« On each iteration we can apply the update only to a chosen subset of states

 Given certain conditions on the value function used to initialize the process,
asynchronous value iteration converges to an optimal policy

» Main advantage

« one can design heuristics that allow the algorithm to concentrate on states
that are likely to belong to the optimal policy

« Much faster convergence

CPSC 422, Lecture 8 49

Asynchronous VI algorithm

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: ndp, an MDP with states S, transition model T, reward function R, discount -y

¢, the maximum error allowed in the utility of any state
local variables: U, U7, vectors of utilities for states in S, initially zero
8, the maximum change in the utility of any state in an iteration

repeat
Ue U860
for some state s in S do
U'[s) Rls] + v max 3 T(s,0,5) Uls'

i |U"[s] — Uls]| > 6 thend—|U'[s] — Ulsl]
until § < (1 —7v)/v
return U

CPSC 422, Lecture 8 50

Model-based RL algorithm

Model Based Reinfortcement Learner

inputs:

S Is a set of states, A is a set of actions, y the discount, c is a prior count
internal state:

real array OQ/S,A], R[S, A, S’]

integer array 7/S,4, S’/

previous state s

previous action a

CPSC 422, Lecture 8

o1

initialize O[5, A] arbitrarily

initialize R[S, A, 5] arbitrarily

initialize T[S, A, 5] to zero

observe current state s

select and carry out action a

repeal forever:
observe reward r and state s’
select and carry out action a
T[s,a,s] « T[s,a,s]+1

r — Rl[s,a,s']

Rls,a,s'] + R[s,a,5] + T[s, a,s']

54— 5
repeal
select state sq, action ay

Asynchronous value

Counts of events when action
a performed in s generated s’

TD-based estimate of R(s,a,s’)

iteration steps

What is this ¢ for?

let P = Z_[T[Sp ay,52) +)
52

until an observation arrives

Frequency of transition
from s, toPSQ\AZ2al ectu

)

.;:] T (R [51, 11, 53] + 7 ﬂ';ﬂ-": Q[Fif "T:]

S

)

Why is the reward
Inside the summation?

e8

52

Discussion

» Which Q values should asyncronous VI update?
At least s in which the action was generated

« Then either select states randomly, or

o States that are likely to get their Q-values changed because

they can reach states with Q-values that have changed the
most

» How many steps of asynchronous value-iteration to
perform?

CPSC 422, Lecture 8 53

Discussion
» Which states to update?

At least s in which the action was generated

» Then either select states randomly, or

» States that are likely to get their Q-values changed because

they can reach states with Q-values that have changed the
most

» How many steps of asynchronous value-iteration to
perform?

« As many as can be done before having to act again

CPSC 422, Lecture 8 54

Q-learning vs. Model-based

> s it better to learn a model and a utility function or an action
value function with no model?

« Still an open-question

» Model-based approaches require less data to learn well, but they
can be computationally more expensive (time per iteration)

» Q-learning takes longer because it does not enforce consistency
among Q-values via the model

 Especially true when the environment becomes more complex

 In games such as chess and backgammon, model-based approaches have
been more successful that g-learning methods

» Cost/ease of acting needs to be factored in

CPSC 422, Lecture 8 55

Reinforcement Learning

CPSC 422, Lecture 8

56

Overview

» Introduction

» Q-learning

» Exploration Exploitation

» Evaluating RL algorithms

» On-Policy learning: SARSA
» Model-based Q-learning

CPSC 422, Lecture 8

57

Overview

» Introduction

» Q-learning

» Exploration vs. Exploitation
» Evaluating RL algorithms

» On-Policy Learning: SARSA
» Model-based Q-learning

CPSC 422, Lecture 8

58

Evaluating RL Algorithms

» Two possible measures
 Quality of the optimal policy
« Reward received while looking for the policy

> If there is a lot of time for learning before the agent is deployed,
then quality of the learned policy is the measure to consider

> If the agent has to learn while being deployed, it may not get to
the optimal policy for a along time

« Reward received while learning is the measure to look at, e.g, plot
cumulative reward as a function of number of steps

« One algorithm dominates another if its plot is consistently above

CPSC 422, Lecture 8 59

Evaluating RL Algorithms

» Plots for example 11.8 in textbook (p. 464), with

« Either fixed or variable o

 Different initial values for Q[s,a]

50000 p=
40000 =
30000 =

20000 p=

Accumulated reward

10000 =

"ID{]GO — 1 1 1 1 I L L L L I '] L L L I L L

0 50 100 150
CPECM22 diettyre Bhousands)

200

60

Evaluating RL Algorithms

» Lots of variability in each algorithm for different runs

 for fair comparison, run each algorithm several times and report average
behavior

» Relevant statistics of the plot

« Asymptotic slopes: how good the policy is after the algorithm stabilizes

« Plot minimum: how much reward must be sacrificed before starting to
gain (cost of learning)

 zero-crossing: how long it takes for the algorithm to recuperate its cost of
learning

00000 -
00000 [~

00000 -

9 i
= 20000 |
= [
E [
a -
8 10000 |
2 C

CPSC#25 tecture f—————H—————! S 61

