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Lecture Overview 

Finish Q-learning 

• Algorithm Summary 

• Example 

 

 

 

 

• Exploration vs. Exploitation 
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Example 

Reward Model:  
• -1 for doing UpCareful 
• Negative reward when hitting  a wall, as marked on the picture 

 Six possible states <s0,..,s5> 

4 actions:  

• UpCareful: moves one tile up unless there is 
wall, in which case stays in same tile. Always 
generates a penalty of -1 

• Left: moves one tile left  unless there is wall, in 
which case  

stays in same tile if  in s0 or s2 

 Is sent to s0 if in s4  

• Right: moves one tile right  unless there is wall, 
in which case stays in same tile 

• Up: 0.8 goes up unless there is a wall, 0.1 like 
Left, 0.1 like Right 
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Example 
 The agent knows about the 6 states and 4 

actions 

 Can perform an action, fully observe its 

state and the reward it gets 

 Does not know how the states are 

configured, nor what the actions do  

• no transition model, nor reward model 
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Example (variable αk) 
 Suppose that in the simple world described earlier, the 

agent has the following sequence of experiences 

          <s0, right, 0, s1, upCareful, -1, s3,  upCareful, -1, s5, left, 0, s4, left, 10, s0> 

 And repeats it k times (not a good behavior for a Q-learning 

agent, but good for didactic purposes) 

 Table shows the first 3 iterations of Q-learning when 

• Q[s,a] is initialized to 0 for every a and s 

• αk= 1/k, γ= 0.9 

 

 

 

• For full demo, see http://artint.info/demos/rl/tGame.html 
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Up 0 0 0 0 0 0 

k=1 k=1 

Only immediate rewards  
are included in the update 

in this first pass  
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k=1 k=2 

1 step backup from 
previous positive 
reward in s4 
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reward in s4 is 
felt two steps 
earlier at the 
3rd iteration 
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Example (variable αk) 

 As the number of iterations increases, the effect of the positive reward 

achieved by moving left in s4 trickles further back in the sequence of steps 

 Q[s4,left] starts changing only after the effect of the reward has reached s0 

(i.e. after iteration 10 in the table) 

 
10 
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Up 0 0 0 0 0 0 

k=2 

New evidence is given 
much more weight 
than original estimate 

Example (Fixed α=1) 
 First iteration same as before, let’s look at the second 
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Same here 

No change from previous 
iteration, as all the reward 
from the step ahead was 
included  there 
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Comparing fixed α (top) and variable α (bottom) 

Fixed α generates faster update:  
 
all states see some effect of the  
positive reward from <s4, left> by  
the 5th iteration 
 
Each update is much larger 
 
Gets very close to final numbers by  
iteration 40, while with variable α 
still  not there by iteration 107 

 

However: 
 
Q-learning with fixed α is not 

guaranteed to converge 
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On the approximation…  
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A. There is positive reward in most states 

B. Q-learning tries each action an 
unbounded number of times 

C. The transition model is not sparse  

 For the approximation to work….. 



Why approximations work…  

 Way to get around the missing  transition model and reward 
model 

 Aren’t we in danger of using data coming from unlikely 
transition to make incorrect adjustments? 

 No, as long as Q-learning tries each action an unbounded 
number of times 

 Frequency of updates reflects transition model, P(s’|a,s) 
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Lecture Overview 

Finish Q-learning 

• Algorithm 

• Example 

 

 

 

 

• Exploration vs. Exploitation 

 

 

 

 



What Does Q-Learning learn 

 Does Q-learning gives the agent an optimal policy?  

CPSC 422, Lecture 8 17 



Q values 
s0 s1 … sk 

a0 Q[s0,a0] Q[s1,a0] …. Q[sk,a0] 

a1 Q[s0,a1] Q[s1,a1] … Q[sk,a1] 

… … … …. … 

an Q[s0,an] Q[s1,an] …. Q[sk,an] 
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Exploration vs. Exploitation 

 Q-learning does not explicitly tell the agent what to do  

• just computes a Q-function Q[s,a] that allows the agent to see, for every 
state, which is the action with the highest expected reward 

 

 Given a Q-function the agent can : 

• Exploit the knowledge accumulated so far, and chose the action 
that maximizes Q[s,a] in a  given state (greedy behavior) 

• Explore new actions, hoping to improve its estimate of the optimal 
Q-function, i.e. *do not chose* the action suggested by the current 
Q[s,a] 
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Exploration vs. Exploitation 

 When to explore and when the exploit? 

1. Never exploring may lead to being stuck in a suboptimal course of 
actions 

2. Exploring too much is a waste of the knowledge accumulated via 
experience 

CPSC 422, Lecture 8 20 

A. Only (1) is true B. Only (2) is true 

C. Both are true D. Both are false 



Exploration vs. Exploitation 

 When to explore and when the exploit? 

• Never exploring may lead to being stuck in a suboptimal course of 
actions 

• Exploring too much is a waste of the knowledge accumulated via 
experience 

 Must find the right compromise 
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Exploration Strategies 

 Hard to come up with an optimal exploration policy (problem 

is widely studied in statistical decision theory) 

 But intuitively, any such strategy should be greedy in the 

limit of infinite exploration (GLIE), i.e.  

• Choose the predicted best action in the limit 

• Try each action an unbounded number of times 

• We will look at two exploration strategies 

• ε-greedy 

• soft-max 
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ε-greedy 

 Choose a random action with probability  ε and choose 

best action with probability 1- ε 

 

 

 First  GLIE condition (try every action an unbounded 

number of times)  is  satisfied via the ε random selection 

 What about second condition? 

• Select predicted best action in the limit. 

 reduce ε overtime! 
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Soft-Max 

 Takes into account improvement in estimates of expected 

reward function Q[s,a] 

• Choose action a in state s with a probability proportional to current 
estimate of Q[s,a] 
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/],[
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asQ

e

e
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

 τ (tau)  in the formula above influences how randomly actions 

should be chosen 

• if τ is high, the exponentials approach 1, the fraction approaches 
1/(number of actions), and each action has approximately the same 
probability of being chosen ( exploration or exploitation?) 

•  as τ → 0, the exponential with the highest Q[s,a] dominates, and the 
current best action is always chosen (exploration or exploitation?) 
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Learning Goals for today’s class 

You can: 

• Explain, trace and implement Q-learning 

• Describe and compare techniques to combine exploration 

with exploitation 
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TODO for Mon 

 
• Carefully read : A Markov decision process 
approach to multi-category patient scheduling in 
a diagnostic facility, Artificial Intelligence in 
Medicine Journal, 2011 
 
• Follow instructions on course WebPage 

<Readings> 
 
• Keep working on assignment-1 (due on Wed) 

 
 
 



Overview (NOT FOR 422) 

 Introduction 

 Q-learning 

 Exploration vs. Exploitation 

 Evaluating RL algorithms 

 On-Policy Learning: SARSA 

 Model-based Q-learning 
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Learning before vs. during deployment  

 As we saw earlier, there are two possible modus operandi for our 

learning agents 

• act in the environment to learn how it works:  

 first learn an optimal policy, then use this policy to act (there is a 
learning phase before deployment) 

• Learn as you go: 

  start operating in the environment right away and learn from actions 
(learning happens  during deployment) 

 If there is time to learn before deployment, the agent should try to 

do its best to learn as much as possible about the environment 

• even engage in locally suboptimal behaviors, because this will guarantee 
reaching an optimal policy in the long run 

 If learning while “at work”, suboptimal behaviors could be costly  
CPSC 422, Lecture 8 29 



Example 

 Consider, for instance, our sample grid game:  

• the optimal policy is to go up in S0 

• But if the agent includes some exploration in its 
policy (e.g. selects 20% of its actions randomly), 
exploring in S2 could be dangerous because it may 
cause hitting the -100 wall 

• No big deal if the agent is not deployed yet, but not 
ideal otherwise 

 

+ 10 

-100 

-1 -1 

-1 

-1 

-1 -1 

 Q-learning would not detect this problem  

• It does  off-policy learning, i.e., it focuses on the optimal 
policy 

 On-policy learning addresses this problem 
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On-policy learning: SARSA 

 On-policy learning learns the value of the policy being followed. 

• e.g., act greedily 80% of the time and act randomly 20% of the time 

• Better  to be aware of the consequences of exploration has it happens, and 
avoid outcomes that are too costly while acting, rather than looking for the 
true optimal policy 

 SARSA 

• So called because it uses <state, action, reward, state, action> experiences 
rather than the <state, action, reward, state> used by Q-learning 

• Instead of looking for the best action at every step, it evaluates the actions 
suggested by the current policy 

• Uses this info to revise it 
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On-policy learning: SARSA 

 Given an experience <s,a,r,s’,a’>, SARSA  updates Q[s,a] as 

follows 

 ]),[])','[((],[],[ asQasQrasQasQ  

What’s different from Q-learning? 
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On-policy learning: SARSA 

 Given an experience <s ,a, r, s’, a’>, SARSA  updates Q[s,a] as 

follows 
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 While Q-learning was using 

 

 There is no more MAX operator in the equation, there is instead 

the Q-value of the action suggested by the policy 

 

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 

CPSC 422, Lecture 8 33 



On-policy learning: SARSA 

 Does SARSA remind you of any other algorithm we have seen 

before? 
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Policy Iteration 
 Algorithm 

• π ← an arbitrary initial policy, U ← A vector of utility values, initially 0 

• 2. Repeat until no change in π 

(a) Compute new utilities given π and current U (policy evaluation) 

 

 

(b) Update π as if utilities were correct (policy improvement) 

 

 


'

)'()'),(,()()(
s

i sUsssTs R s U 











'

''

)'()',,(maxarg)(then  

)'()'),(,()'()',,(max

sFor 

sa
i

s

i

s
a

sUsasTs

sUsssT sUsasTIf

 

i



Expected value of following 
current пi from s 

Expected value of following 
another action in s 

Policy  
Improvement 

 step 

CPSC 422, Lecture 8 35 



]),[]','[(],[],[ asQasQrasQasQ  

0)00*9.00(10],[

]);,[],[9.0(],[],[

0

0100





rightsQ

rightsQUpCarefulsQrrightsQrightsQ k

1)00*9.01(10],[

]);,[],[9.0(],[],[

1

1311





upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ k

+ 10 

-100 

-1 -1 

-1 

-1 

-1 -1 

1)00*9.01(10],[

]);,[],[9.0(],[],[

3

3533





upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ k

0)00*9.00(10],[

]);,[],[9.0(],[],[

5

5455





LeftsQ

LeftsQleftsQrLeftsQLeftsQ k

10)00*9.010(10],[

]);,[],[9.0(],[],[

4

4044





LeftsQ

LeftsQRightsQrLeftsQLeftsQ k

Q[s,a] s0 s1 s2 s3 s4 s5 

upCareful 0 0 0 0 0 0 

Left 0 0 0 0 0 0 

Right 0 0 0 0 0 0 

Up 0 0 0 0 0 0 
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Only immediate rewards  
are included in the update, 

as with Q-learning  
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Up 0 0 0 0 0 0 

SARSA backs up the 
expected reward of the next 
action, rather than the max 
expected reward 
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Comparing SARSA and Q-learning 

 For the little 6-states world 

 

 Policy learned by Q-learning 80% greedy is to go  up  in s0 to 

reach s4 quickly  and get the big +10 reward 

 

+ 10 

-100 

-1 -1 

-1 

-1 

-1 -1 
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Comparing SARSA and Q-learning 

 Policy learned by SARSA 80% greedy is to go left in s0  

 Safer because avoid the chance of getting the -100 reward in s2 

 but non-optimal => lower q-values   
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SARSA Algorithm 

This could be, for instance any ε-
greedy strategy: 
- Choose random ε times, and max 
the rest 

This could be, for instance any ε-
greedy strategy: 
-Choose random ε times, and max 
the rest 

If the random step is chosen 
here, and has a bad negative 
reward, this will affect the 
value of Q[s,a]. 
 
Next time in s, a’ may no 
longer be the action selected 
because of its lowered Q 
value 
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Another Example 
 Gridworld with: 

• Deterministic actions up, down, left, right 

• Start from S and arrive at G 

• Reward is -1 for all transitions, except those into the region marked “Cliff” 

Falling into the cliff causes the agent to be sent back to start: r = -100 
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Another Example 

 Because of  negative reward for every step taken, the optimal 

policy over the four standard actions is to take the shortest path 

along the cliff 

 But if the agents adopt an ε-greedy action selection strategy with 

ε=0.1, walking along the cliff is dangerous 

• The optimal path that considers exploration is to go around as far as 
possible from the cliff 
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Q-learning vs. SARSA 

 Q-learning learns the optimal policy, but because it does so 

without taking exploration into account, it does not do so well 

while the agent is exploring 

• It occasionally falls into the cliff, so its reward per episode is not that great 

 SARSA has better on-line performance (reward per episode), 

because it learns to stay away from the cliff while exploring 

• But note that if ε→0, SARSA and Q-learning would asymptotically 
converge to the  optimal policy CPSC 422, Lecture 8 43 



Problem with Model-free methods 
 

 Q-learning and SARSA are model-free methods 

                    What does this mean? 
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Problems With Model-free Methods 

 Q-learning and SARSA are model-free methods 

• They do not need to learn the transition and/or reward model, they are 
implicitly taken into account via experiences 

 Sounds handy, but there is a main disadvantage: 

• How often does the agent get to update its Q-estimates? 
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Problems with Model-free Methods 

 Q-learning and SARSA are model-free methods 

• They do not need to learn the transition and/or reward model, they are 
implicitly taken into account via experiences 

 Sounds handy, but there is a main disadvantage: 

• How often does the agent get to update its Q-estimates? 

• Only after a new experience comes in 

• Great if the agent acts very frequently, not so great if actions are sparse, 
because it wastes computation time 
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Model-based methods 
 Idea 

•  learn the MDP and interleave acting and planning. 

 After each experience,  

• update probabilities and the reward,  

• do some steps of value iteration (asynchronous ) to get better estimates of 
state utilities U(s)  given the current model and reward function 

• Remember that there is the following link between Q values and utility 
values 
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VI algorithm 
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Asynchronous Value Iteration 

 The “basic” version of value iteration applies the Bellman update to 

all states at every iteration 

 This is in fact not necessary 

• On each iteration we can apply the update only to a chosen subset of states 

• Given certain conditions on the value function used to initialize the process, 
asynchronous value iteration converges to an optimal policy 

 
 Main advantage  

•  one can design heuristics that allow the algorithm to concentrate on states 
that are likely to belong to the optimal policy 

 

• Much faster convergence 
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Asynchronous VI algorithm 

for some 
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Model-based RL algorithm 

Model Based Reinfortcement Learner 
inputs: 
S is a set of states, A is a set of actions, γ the discount, c is a prior count 
internal state: 
real array Q[S,A], R[S,A, S’] 
integer array T[S,A, S’] 
previous state s 
previous action a 
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Counts of events when action 
a performed in s generated s’ 

TD-based estimate of R(s,a,s’) 

Asynchronous value 
iteration steps 

Frequency of transition 
from s1 to s2 via a1 

Why is the reward 
inside the summation? 

What is this c for? 
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Discussion 

Which Q values should asyncronous  VI update? 

• At least s in which the action was generated 

• Then either select states randomly, or  

• States that are likely to get their Q-values changed because 
they can reach states with Q-values that have changed the 
most 

How many steps of asynchronous value-iteration to 

perform?  
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Discussion 

Which states to update? 

• At least s in which the action was generated 

• Then either select states randomly, or  

• States that are likely to get their Q-values changed because 
they can reach states with Q-values that have changed the 
most 

How many steps of asynchronous value-iteration to 

perform?  

• As many as can be done before having to act again 
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Q-learning vs. Model-based 

 Is it better to learn a model and a utility function or an action 

value function with no model? 

• Still an open-question 

 Model-based approaches require less data to learn well, but they 

can be computationally more expensive (time per iteration) 

 Q-learning takes longer because it does not enforce consistency 

among Q-values via the model 

• Especially true when the environment becomes more complex 

• In games such as chess and backgammon, model-based approaches have 
been more successful that q-learning methods 

  Cost/ease of acting needs to be factored in 
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Reinforcement Learning 
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Overview 

 Introduction 

 Q-learning 

 Exploration Exploitation 

 Evaluating RL algorithms 

 On-Policy learning: SARSA 

 Model-based Q-learning 

 

 

CPSC 422, Lecture 8 57 



Overview 

 Introduction 

 Q-learning 

 Exploration vs. Exploitation 

 Evaluating RL algorithms 

 On-Policy Learning: SARSA 

 Model-based Q-learning 
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Evaluating RL Algorithms 

 Two possible measures 

• Quality of the optimal policy 

• Reward received while looking for the policy 

 If there is a lot of time for learning before the agent is deployed, 

then quality  of the learned  policy is the measure to consider 

 If the agent has to learn while being deployed, it may not get to 

the optimal policy for  a along time 

• Reward received while learning is the measure to look at, e.g, plot 
cumulative reward as a function of number of steps 

• One algorithm dominates another if its plot is consistently above 
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Evaluating RL Algorithms 

 Plots for example 11.8 in textbook (p. 464), with 

• Either fixed or variable α 

• Different initial values for Q[s,a] 
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Evaluating RL Algorithms 

 Lots of variability in each algorithm for different runs 

• for  fair comparison, run each algorithm several times and report average 
behavior 

 Relevant statistics of  the plot 

• Asymptotic slopes: how good the policy is after the algorithm stabilizes 

• Plot minimum: how much reward must be sacrificed before starting to 
gain (cost of learning) 

• zero-crossing: how long it takes for the algorithm to recuperate its cost of 
learning 
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