Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 17

Oct, 19, 2015

Slide Sources
D. Koller, Stanford CS - Probabilistic Graphical Models
D. Page, Whitehead Institute, MIT

Several Figures from
"Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009

Simple but Powerful Approach: Particle Filtering

Idea from Exact Filtering: should be able to compute $P\left(X_{t+1} / \boldsymbol{e}_{1: t+1}\right)$ from $P\left(X_{t} / \boldsymbol{e}_{1: t}\right)$
". One slice from the previous slice..."
Idea from Likelihood Weighting

- Samples should be weighted by the probability of evidence given parents

New Idea: run multiple samples simultaneously through the network

Particle Filtering

- Run all \mathbf{N} samples together through the network, one slice at a time

STEP 0: Generate a population on N initial-state samples by sampling from initial state distribution $P\left(X_{0}\right)$

Particle Filtering

STEP 1: Propagate each sample for x_{t} forward by sampling the next state value x_{t+1} based on $\mathrm{P}\left(X_{t+1} \mid X_{t}\right)$

Particle Filtering

STEP 2: Weight each sample by the likelihood it assigns to the evidence

- E.g. assume we observe not umbrella at $\mathrm{t}+1$

Particle Filtering

STEP 3: Create a new population from the population at X_{t+1}, i.e. resample the population so that the probability that each sample is selected is proportional to its weight

> Start the Particle Filtering cycle again from the new sample

Is PF Efficient?

In practice, approximation error of particle filtering remains bounded overtime

It is also possible to prove that the approximation maintains bounded error with high probability
(with specific assumption: probs in transition and sensor models >0 and <1)

422 big picture: Where are we?

Deterministic

Logics	Belief Nets
	Approx. : Gibbs
First Order Logics	Markov Chains and HMMs
Ontologies Temporal rep.	Forward, Viterbi.... Approx. : Particle Filtering
- Full Resolution - SAT	Undirected Graphical Models Markov Networks Conditional Random Fields
	Markov Decision Processes Partially Observable MDP

Stochastic
Belief Nets
Approx. : Gibbs
Markov Chains and HMMs Forward, Viterbi....
Approx. : Particle Filtering
Undirected Graphical Models Markov Networks
Conditional Random Fields
Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning
Applications of AI

Representation
Reasoning
Technique

Lecture Overview

Probabilistic Graphical models

- Intro
- Example
- Markov Networks Representation (vs. Belief Networks)
- Inference in Markov Networks (Exact and Approx.)
- Applications of Markov Networks

Probabilistic Graphical Models

From "Probabilistic Graphical Models: Principles and Techniques" D. Koller, N. Friedman 2009

Misconception Example

- Four students (Alice, Bill, Debbie, Charles) get together in pairs, to work on a homework
- But only in the following pairs: AB AD DC BC
- Professor misspoke and might have generated misconception
- A student might have figured it out later and told study partner

$$
\begin{gathered}
\text { A random var } \\
\text { two values } \\
a^{\prime} \text { Alice has the } \\
\text { misc. } \\
\partial^{\circ} \text { Alice doesu'thare } \\
\text { the mise. } \\
\text { side } 11
\end{gathered}
$$

Example: In/Depencencies

Are A and C independent because they never spoke? No, because A might have figure it out and told B who then told C
But if we know the values of B and $D . .$. .

And if we know the values of A and C

Which of these two Bnets captures the two

 independencies of our example?
irclicker.

Parameterization of Markov Networks

Factors define the local interactions (like CPTs in Bnets) What about the global model? What do you do with Bnets?

How do we combine local models?

As in BNets by multiplying them!

$$
\begin{aligned}
& \tilde{P}(A, B, C, D)=\phi_{1}(A, B) \times \phi_{2}(B, C) \times \phi_{3}(C, D) \times \phi_{4}(A, D) \\
& P(A, B, C, D)=\frac{1}{Z} \tilde{P}(A, B, C, D) \\
& P(A, B) \text { ? }
\end{aligned}
$$

Multiplying Factors (same seen in 322 for VarElim)

Factors do not represent marginal probs. !

$a^{0} b^{0}$	0.13
$a^{0} b^{1}$	0.69
$a^{1} b^{0}$	0.14
$a^{1} b^{1}$	0.04

Marginal P(A,B)
Computed from the joint

Step Back.... From structure to factors/potentials

In a Bret the joint is factorized....

(a)

In a Markov Network you have one factor for each maximal clique

$\Phi_{1}(A B D)$

 $\Phi_{2}(B D C) \Phi_{4}(E G)$ Slide 18Directed vs. Undirected

(a)
(b)

$$
\begin{array}{lll}
\text { Independencies } & (F \perp H \mid S) & \\
& (C \perp S \mid F, H) & \\
(M \perp D \mid A D) \\
\text { Factorization } P(S, F, H, M, C)= & & \left(P(A B C D)=\frac{1}{Z} \Phi_{1}(A B) *\right. \\
P(S) * P(F \mid S) * P(H \mid S) * P / M \mid F) * & * \Phi_{2}(B C) * \Phi_{3}(C D) * \Phi_{2}(A D) \\
P(C \mid F+1) & C P S C ~ 422, \text { Lecture 17 } &
\end{array}
$$

General definitions

Two nodes in a Markov network are independent if and only if every path between them is cut off by evidence

eg for A C

So the markov blanket of a node is...?
eg for C

Markov Networks Applications (1): Computer Vision

Called Markov Random Fields

- Stereo Reconstruction
- Image Segmentation
- Object recognition

Typically pairwise MRF

- Each vars correspond to a pixel (or superpixel)
- Edges (factors) correspond to interactions between adjacent pixels in the image
- E.g., in segmentation: from generically penalize discontinuities, to road under car

CPSC 422, Lecture 17

Image segmentation

Markov Networks Applications (2): Sequence Labeling in NLP and Biolnformatics

Conditional random fields (next class Wed)

Learning Goals for today's class

$>$ You can:

- Justify the need for undirected graphical model (Markov Networks)
- Interpret local models (factors/potentials) and combine them to express the joint
- Define independencies and Markov blanket for Markov Networks
- Perform Exact and Approx. Inference in Markov Networks
- Describe a few applications of Markov Networks

Midterm, Mon, Oct 26, we will start at 9am sharp

How to prepare....

- Keep Working on assignment-2 !
- Go to Office Hours
- Learning Goals (look at the end of the slides for each lecture - will post complete list)
- Revise all the clicker questions and practice exercises
- Will post more practice material today

How to acquire factors?

