Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 16

Oct, 16, 2015

Lecture Overview

Probabilistic temporal Inferences

- Filtering
- Prediction
- Smoothing (forward-backward)
- Most Likely Sequence of States (Viterbi)
- Approx. Inference In Temporal Models (Particle Filtering)

Most Likely Sequence

Suppose that in the rain example we have the following umbrella observation sequence

```
[true, true, false, true, true]
```

➤ Is the most likely state sequence?

```
[rain, rain, no-rain, rain, rain]
```

➤ In this case you may have guessed right... but if you have more states and/or more observations, with complex transition and observation models.....

HMMs: most likely sequence (from 322)

Bioinformatics: Gene Finding

- States: coding / non-coding region ×× ✓ ✓ ✓ ✓ ✓
- Observations: DNA Sequences > ATCGGAA

Natural Language Processing: e.g., Speech Recognition

States:

• Observations:

phoneme \ word

AMM1

acoustic signal \ phoneme

For these problems the critical inference is:

find the most likely sequence of states given a sequence of observations

Part-of-Speech (PoS) Tagging

- Given a text in natural language, label (tag) each word with its syntactic category
 - E.g, Noun, verb, pronoun, preposition, adjective, adverb, article, conjunction

> Input

Brainpower, not physical plant, is now a firm's chief asset.

> Output

Brainpower_NN ,_, not_RB physical_JJ plant_NN ,_, is_VBZ now RB a DT firm NN 's POS chief JJ asset NN . .

Tag meanings

NNP (Proper Noun singular), RB (Adverb), JJ (Adjective), NN (Noun sing. or mass), VBZ (Verb, 3 person singular present), DT (Determiner), POS (Possessive ending), . (sentence-final punctuation)

POS Tagging is very useful

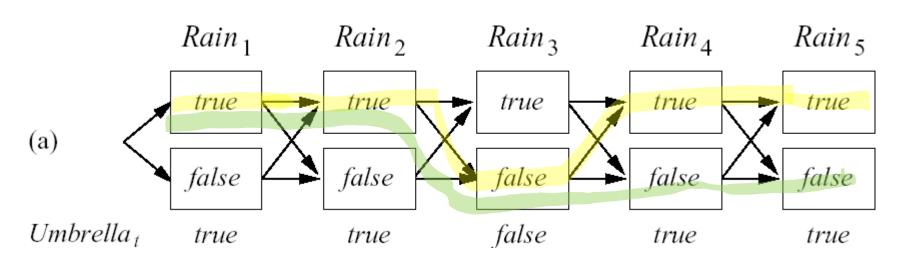
- As a basis for **Parsing** in NL understanding
- Information Retrieval
 - ✓ Quickly finding names or other phrases for information extraction
 - ✓ Select important words from documents (e.g., nouns)
- Speech synthesis: Knowing PoS produce more natural pronunciations
 - ✓ E.g,. Content (noun) vs. content (adjective); object (noun) vs. object (verb)

Most Likely Sequence (Explanation)

- \triangleright Most Likely Sequence: $\operatorname{argmax}_{x_{1:T}} P(X_{1:T} \mid e_{1:T})$
- > Idea

• find the most likely path to each state in X_T

• As for filtering etc. let's try to develop a recursive solution



Joint vs. Conditional Prob

You have two binary random variables X and Y

$$\operatorname{argmax}_{x} P(X \mid Y=t)$$
? $\operatorname{argmax}_{x} P(X, Y=t)$

- A. Different x
- B. Same x

C. It depends

X	Y	P(X , Y)	, t
t	t	.4	E X=th
f	t	.2	tor poth
t	f	.1	
f	f	.3	

Most Likely Sequence: Formal Derivation

 \triangleright Suppose we want to find the most likely path to state x_{t+1} given $e_{1:t+1}$.

$$\max_{\mathbf{x_{1},...x_{t}}} \mathbf{P}(\mathbf{x}_{1},....\mathbf{x}_{t},\mathbf{x}_{t+1}|\ \mathbf{e}_{1:t+1}) \ \text{but this is....}$$

$$\max_{\mathbf{x_{1},...x_{t}}} \mathbf{P}(\mathbf{x}_{1},....\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t+1}) = \max_{\mathbf{x_{1},...x_{t}}} \mathbf{P}(\mathbf{x}_{1},....\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t},\mathbf{e}_{t+1}) = \underline{\text{Cond. Prob}}$$

$$= \max_{\mathbf{x_{1},...x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{e}_{1:t},\mathbf{x}_{1},....\mathbf{x}_{t},\mathbf{x}_{t+1}) \ \mathbf{P}(\mathbf{x}_{1},....\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t}) = \underline{\text{Markov Assumption/Indep.}}$$

$$= \max_{\mathbf{x_{1},...x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \ \mathbf{P}(\mathbf{x}_{1},....\mathbf{x}_{t},\mathbf{x}_{t+1},\mathbf{e}_{1:t}) = \underline{\text{Cond. Prob}}$$

$$= \max_{\mathbf{x_{1},...x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \ \mathbf{P}(\mathbf{x}_{t+1}|\ \mathbf{x}_{1},....\ \mathbf{x}_{t},\mathbf{e}_{1:t}) \mathbf{P}(\mathbf{x}_{1},....\ \mathbf{x}_{t},\mathbf{e}_{1:t}) = \underline{\text{Markov Assumption/Indep}}$$

$$= \max_{\mathbf{x_{1},...x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \ \mathbf{P}(\mathbf{x}_{t+1}|\mathbf{x}_{t}) \ \mathbf{P}(\mathbf{x}_{1},....\ \mathbf{x}_{t},\mathbf{e}_{1:t}) \mathbf{P}(\mathbf{x}_{1},....\ \mathbf{x}_{t},\mathbf{e}_{1:t}) = \underline{\text{Markov Assumption/Indep}}$$

$$= \max_{\mathbf{x_{1},...x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \ \mathbf{P}(\mathbf{x}_{t+1}|\mathbf{x}_{t}) \ \mathbf{P}(\mathbf{x}_{1},....\ \mathbf{x}_{t-1},\mathbf{x}_{t},\mathbf{e}_{1:t}) = \underline{\text{Markov Assumption/Indep}}$$

$$= \max_{\mathbf{x_{1},...x_{t}}} \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{x}_{t+1}) \ \mathbf{P}(\mathbf{x}_{t+1}|\mathbf{x}_{t}) \ \mathbf{P}(\mathbf{x}_{1},....\ \mathbf{x}_{t-1},\mathbf{x}_{t},\mathbf{e}_{1:t}) = \underline{\text{Markov Assumption/Indep}}$$

Intuition behind solution

 $P(e_{t+1} | x_{t+1}) \max_{x_t} (P(x_{t+1} | x_t) \max_{x_1,...x_{t-1}} P(x_1,...x_{t-1}, x_t, e_{1:t}))$

prob. of the most likely path to state Single 10 Slide 10

$$P(e_{t+1} | x_{t+1}) \max_{x_t} (P(x_{t+1} | x_t) \max_{x_1,...x_{t-1}} P(x_1,...x_{t-1}, x_t, e_{1:t}))$$

The probability of the most likely path to S_2 at time t+1 is:

$$P(e_{t+1}|s_2)* max = P(s_2|s_1)* MLP_1 P(s_2|s_2)* MLP_2 P(s_2|s_3)* MLP_3$$

Most Likely Sequence

 \triangleright Identical to filtering (notation warning: this is expressed for X_{t+1} instead of X_t , it does not make any difference!)

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$$

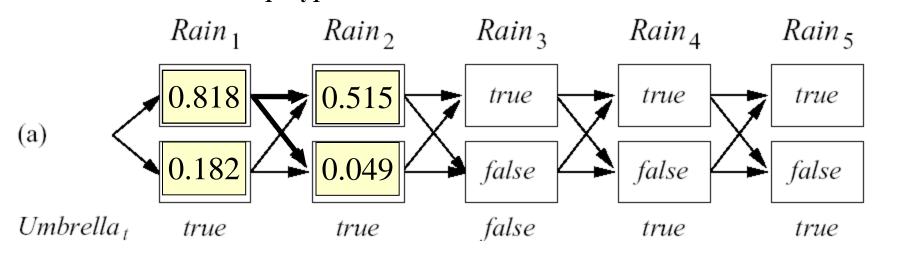
$$\max_{\mathbf{x_1,...x_t}} \mathbf{P}(\mathbf{x_1,....} \mathbf{x_t, X_{t+1}, e_{1:t+1}})$$

$$= \mathbf{P}(\mathbf{e_{t+1}} | \mathbf{X_{t+1}}) \max_{\mathbf{x_t}} \mathbf{P}(\mathbf{X_{t+1}} | \mathbf{x_t}) \max_{\mathbf{x_1,...x_{t-1}}} \mathbf{P}(\mathbf{x_1,....} \mathbf{x_{t-1}, x_t, e_{1:t}})$$

- $F_{1:t} = \mathbf{P}(\mathbf{X}_{t} | \mathbf{e}_{1:t})$ is replaced by
 - $m_{1:t} = \max_{\mathbf{x}_1,...\mathbf{x}_{t-1}} P(\mathbf{x}_1,...,\mathbf{x}_{t-1},\mathbf{X}_t,\mathbf{e}_{1:t})$ (*)
- > the summation in the **filtering** equations is replaced by maximization in the **most likely sequence** equations

Rain Example

• $\max_{\mathbf{x_1,...x_t}} \mathbf{P}(\mathbf{x}_1,...,\mathbf{x}_t,\mathbf{X}_{t+1},\mathbf{e}_{1:t+1}) \neq \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x_t}} [(\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \mathbf{m}_{1:t}]$ $\mathbf{m}_{1:t} = \max_{\mathbf{x}_1,...\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1,...,\mathbf{x}_{t-1},\mathbf{X}_t,\mathbf{e}_{1:t})$

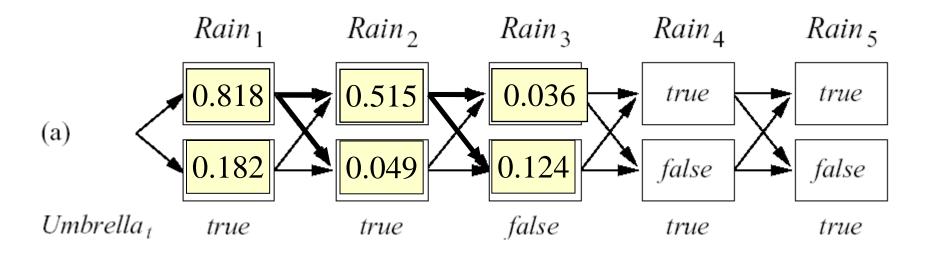


- $m_{1:1}$ is just $P(R_1|u) = <0.818, 0.182>$
- what is the most likely way to end up in Rain=T ax [P(ralr.) * 0 010 Prime Rain=T or from Rain=F? $m_{1:2} =$

 $P(u_2|R_2)$ max $[P(r_2|r_1) * 0.818, P(r_2| \neg r_1) 0.182]$, max $[P(\neg r_2|r_1) * 0.818, P(\neg r_2| \neg r_1) 0.182)$ =

 $= <0.9,0.2>< \max(0.7*0.818,0.3*0.182), \max(0.3*0.818,0.7*0.182) =$

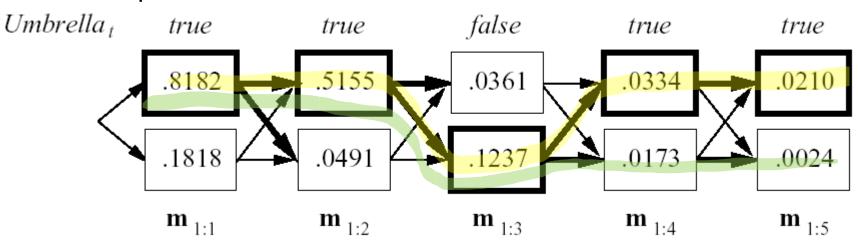
Rain Example



$$\mathbf{P}_{1:3} = \mathbf{P}_{1:3} = \mathbf{P}_{1:3} = \mathbf{P}_{1:3} = \mathbf{P}_{1:3} = \mathbf{P}_{1:3} = (0.1,0.8) < \max [P(r_3|r_2) * 0.515, P(r_3|r_2) * 0.049], \max [P(r_3|r_2) * 0.515, P(r_3|r_2) * 0.049] = (0.1,0.8) < \max(0.7 * 0.515, 0.3 * 0.049), \max(0.3 * 0.515, 0.7 * 0.049) = (0.1,0.8) < (0.3 * 0.36, 0.155) = (0.036, 0.124)$$

Viterbi Algorithm

- > Computes the most likely sequence to X_{t+1} by
 - running forward along the sequence
 - computing the m message at each time step
 - Keep back pointers to states that maximize the function
 - in the end the message has the prob. Of the most likely sequence to each of the final states
 - we can pick the most likely one and build the path by retracing the back pointers



Viterbi Algorithm: Complexity

T = number of time slices

S = number of states

➤ Time complexity?

A. $O(T^2 S)$

B. O(T S²)

 $C. O(T^2 S^2)$

Space complexity

A. O(T S)

B. O(T² S)

C. O(T² S²)

Lecture Overview

Probabilistic temporal Inferences

- Filtering
- Prediction
- Smoothing (forward-backward)
- Most Likely Sequence of States (Viterbi)
- Approx. Inference In Temporal Models (Particle Filtering)

Limitations of Exact Algorithms

HMM has very large number of states

 Our temporal model is a Dynamic Belief Network with several "state" variables

Exact algorithms do not scale up (3) What to do?

Approximate Inference

Basic idea:

- Draw N samples from known prob. distributions
- Use those samples to estimate unknown prob. distributions

Why sample?

 Inference: getting N samples is faster than computing the right answer (e.g. with Filtering)

Simple but Powerful Approach: Particle Filtering

Idea from Exact Filtering: should be able to compute $P(X_{t+1} | e_{1:t+1})$ from $P(X_t | e_{1:t})$ ".. One slice from the previous slice…"

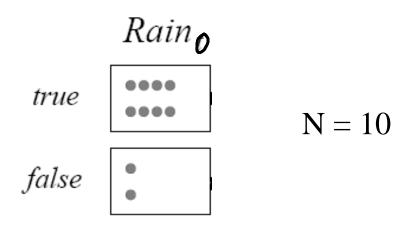
Idea from Likelihood Weighting

 Samples should be weighted by the probability of evidence given parents

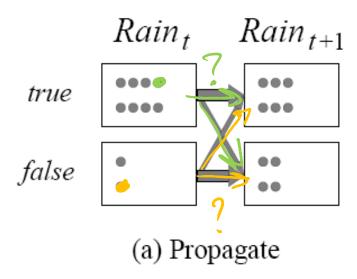
New Idea: run multiple samples simultaneously through the network

 Run all N samples together through the network, one slice at a time

STEP 0: Generate a population on N initial-state samples by sampling from initial state distribution $P(X_0)$



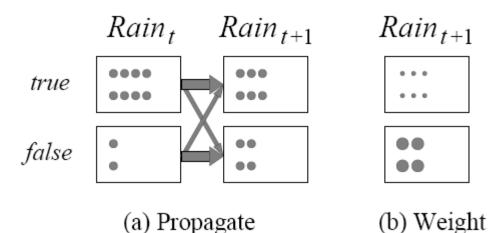
STEP 1: Propagate each sample for x_t forward by sampling the next state value x_{t+1} based on $P(X_{t+1}|X_t)$



R_t	$P(R_{t+1})$	
t	0.7	
f	0.3	

STEP 2: Weight each sample by the likelihood it assigns to the evidence

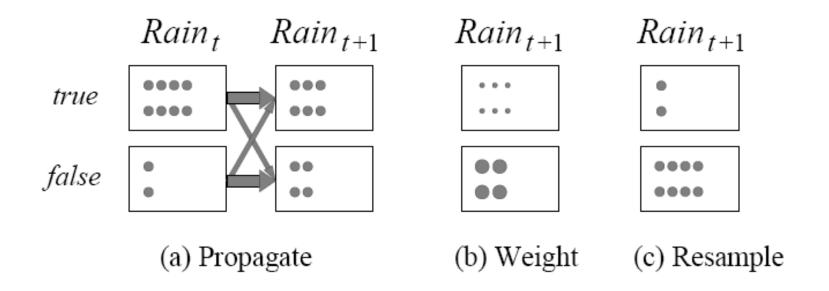
E.g. assume we observe not umbrella at t+1



R_t	$P(u_t)$	P(1 u _t)
t	0.9	0.1
f	0.2	0.8

STEP 3: Create a new sample from the population at X_{t+1} , i.e.

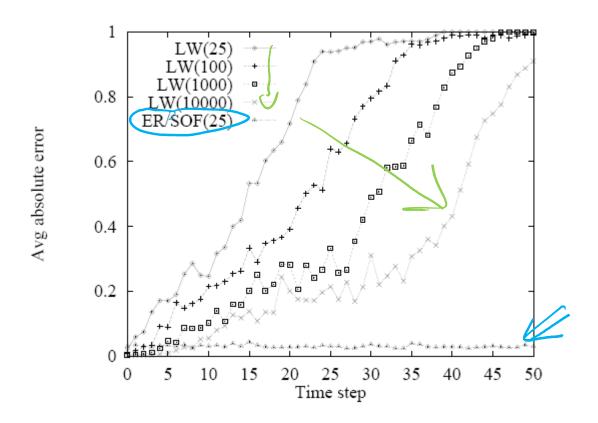
resample the population so that the probability that each sample is selected is proportional to its weight



Start the Particle Filtering cycle again from the new sample

Is PF Efficient?

In practice, approximation error of particle filtering remains bounded overtime



It is also possible to prove that the approximation maintains bounded error with high probability (with specific assumptions)

422 big picture: Where are we?

Hybrid: Det +Sto

Prob CFG
Prob Relational Models
Markov Logics

Deterministic

Stochastic

Query

Logics First Order Logics

Ontologies Temporal rep.

- Full Resolution
- SAT

Planning

Belief Nets

Approx.: Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx. : Particle Filtering

Undirected Graphical Models
Markov Networks
Conditional Random Fields

Markov Decision Processes and Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of Al

Representation

Reasoning Technique

Learning Goals for today's class

> You can:

- Describe the problem of finding the most likely sequence of states (given a sequence of observations), derive its solution (Viterbi algorithm) by manipulating probabilities and applying it to a temporal model
- Describe and apply Particle Filtering for approx. inference in temporal models.

TODO for Mon

Keep working on Assignment-2: RL, Approx.
 Inference in BN, Temporal Models - due Oct 21

Midterm Mon Oct 26

Keep working on Assignment-2: RL, Approx.
 Inference in BN, Temporal Models - due Oct 21