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Lecture Overview 

Probabilistic temporal Inferences 

• Filtering 

• Prediction 

• Smoothing (forward-backward) 

• Most Likely Sequence of States (Viterbi) 

 

 

 

 



Smoothing  

 Smoothing: Compute the posterior distribution over a past 
state given all evidence to date 

• P(Xk | e0:t )  for 1 ≤ k < t 

 

E0 

 To revise your estimates in the past based on more recent 
evidence 

 



Smoothing  

 P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence 

    = α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) using…  

    = α P(Xk | e0:k ) P(ek+1:t | Xk)  using… 

 

 

backward message,  

b k+1:t 

computed by a recursive process 

that runs backwards from t 

 

forward message from 

filtering up to state k,  

f 0:k 

A. Bayes Rule 

B. Cond. Independence 

C. Product Rule 



Smoothing  

 P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence 

    = α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) using Bayes Rule 

    = α P(Xk | e0:k ) P(ek+1:t | Xk) By Markov assumption on evidence 

 

 
backward message,  

b k+1:t 

computed by a recursive process 

that runs backwards from t 

 

forward message from 

filtering up to state k,  

f 0:k 



Backward Message  

P(ek+1:t | Xk) = ∑xk+1
 P(ek+1:t , xk+1 | Xk) = ∑xk+1

 P(ek+1:t |xk+1 , Xk) P( xk+1 | Xk) = 

= ∑xk+1
 P(ek+1:t |xk+1 ) P( xk+1 | Xk) by Markov assumption on evidence 

= ∑xk+1
 P(ek+1,ek+2:t |xk+1 ) P( xk+1 | Xk)  

= ∑xk+1
 P(ek+1|xk+1 ) P(ek+2:t |xk+1 ) P( xk+1 | Xk) 

                                

 

 

 
sensor 

model 

transition model recursive call 

 In message notation 

     bk+1:t  = BACKWARD (bk+2:t, ek+1) 

 

 

Product 

Rule 

because ek+1 and ek+2:t, are 

conditionally independent 

given xk+1 



More Intuitive Interpretation (Example with three states) 
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P(ek+1:t | Xk) =  ∑xk+1
 P( xk+1 | Xk)P(ek+1|xk+1 ) P(ek+2:t |xk+1 )  

 

 

 



Forward-Backward Procedure  
 Thus,  

• P(Xk | e0:t) = α f0:k bk+1:t 

   and this value can be computed by recursion through time, 
running forward from 0 to k and backwards from t to k+1 



How is it Backward initialized? 

 The backwards phase is initialized with making an 
unspecified observation et+1 at  t+ 1…… 

     bt+1:t  = P(et+1| Xt ) = P( unspecified | Xt ) = ? 

 

A.   0 B.   0.5 C.   1 



How is it Backward initialized? 

 You will observe something for sure! It is only when you 
put some constraints on the observations that the 
probability becomes less than 1 

 

 The backwards phase is initialized with making an 
unspecified observation et+1 at  t+ 1…… 

     bt+1:t  = P(et+1| Xt ) = P( unspecified | Xt ) = 1 

 



Rain Example 

Rain0 Rain1 

Umbrella1 

Rain2 

Umbrella2 

 Let’s compute the probability of rain at t = 1, given umbrella observations at t=1 

and t =2 

 From P(Xk | e1:t)  = α P(Xk | e1:k ) P(ek+1:t | Xk)  we have  

P(R1| e1:2) = P(R1| u1:u2) = α P(R1| u1) P(u2 | R1)  

 

 

 P(R1| u1) = <0.818, 0.182>  as it is the filtering to t =1 that we did in lecture 14 

TRUE     0.5 

FALSE   0.5 

 0.5 

 0.5 
    0.818 

     0.182 

backward message for propagating evidence 

backward from time 2 

 

forward message from filtering up 

to state 1 



Rain Example 

Rain0 Rain1 

Umbrella1 

Rain2 

Umbrella2 

 From P(ek+1:t | Xk)  = ∑xk+1
 P(ek+1|xk+1 ) P(ek+2:t |xk+1 ) P( xk+1 | Xk)  

 P(u2 | R1) = ∑ P(u2|r ) P(|r ) P( r | R1) =  

 P(u2|r2 ) P(|r2 ) <P( r2 | r1), P( r2 | ┐r1) > +  

      P(u2| ┐r2 ) P(| ┐r2 ) <P(┐r2 | r1), P(┐r2 | ┐r1)> 

=  (0.9 * 1 * <0.7,0.3>) + (0.2 * 1 * <0.3, 0.7>) = <0.69,0.41> 

Thus  

 α P(R1| u1) P(u2 | R1) = α<0.818, 0.182> * <0.69, 0.41> ~ <0.883, 0.117> 

 

TRUE     0.5 

FALSE   0.5 

 0.5 

 0.5 

    0.818 

     0.182 
 0.69 

 0.41 

 0.883 

 0.117 

Term corresponding to the Fictitious 

unspecified observation sequence e3:2 
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Lecture Overview 

Probabilistic temporal Inferences 

• Filtering 

• Prediction 

• Smoothing (forward-backward) 

• Most Likely Sequence of States (Viterbi) 

 

 

 

 



Most Likely Sequence  

 Suppose that in the rain  example we have the following 
umbrella observation sequence 

[true, true, false, true, true] 

 Is the most likely state sequence? 

[rain, rain, no-rain, rain, rain] 

 In this case you may have guessed right… but if you have 
more states and/or more observations, with complex 
transition and observation models….. 
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HMMs : most likely sequence (from 322) 

Natural Language Processing: e.g., Speech Recognition 

• States:   phoneme      \  word  

 

• Observations:      acoustic signal  \   phoneme 

Bioinformatics: Gene Finding 

• States: coding / non-coding region 

• Observations: DNA Sequences 

For these problems the critical inference is:  

find the most likely sequence of states given a 

sequence of observations  



Part-of-Speech (PoS) Tagging 
 Given a text in natural language, label (tag) each word with its 

syntactic category  

• E.g, Noun, verb, pronoun, preposition, adjective, adverb, article, 
conjunction 

 Input 

• Brainpower, not physical plant, is now a firm's chief asset. 

 Output 

• Brainpower_NN ,_, not_RB physical_JJ plant_NN ,_, is_VBZ 
now_RB a_DT firm_NN 's_POS chief_JJ asset_NN ._. 

Tag meanings 

 NNP (Proper Noun singular), RB (Adverb), JJ (Adjective), NN (Noun sing. or 
mass), VBZ (Verb, 3 person singular present), DT (Determiner), POS 
(Possessive ending),  . (sentence-final punctuation) 



POS Tagging is very useful 

• As a basis for parsing in NL understanding 

• Information Retrieval 

Quickly finding names or other phrases for information extraction 

Select important words from documents (e.g., nouns) 

• Word-sense disambiguation 

 I made her duck (how many meanings does this sentence have)? 

• Speech synthesis: Knowing PoS  produce more natural 
pronunciations  

E.g,. Content (noun) vs. content (adjective);  object (noun) vs. 
object (verb) 



Most Likely Sequence (Explanation)  

 Most Likely Sequence: argmaxx1:T P(X1:T | e1:T)  

 Idea 

• find the most likely path to each state in XT 

• As for  filtering etc. we will develop a recursive solution 



Most Likely Sequence (Explanation)  

 Most Likely Sequence: argmaxx1:T P(X1:T | e1:T)  

 Idea 

• find the most likely path to each state in XT 

• As for  filtering etc. let’s try to develop a recursive solution 

CPSC 422, Lecture 16 Slide 23 



Joint vs. Conditional Prob 
 You have two binary random variables X and Y  

 

 

B.     = 

A.     > 

D. It depends 

argmaxx P(X | Y=t) ? argmaxx P(X , Y=t)  

C.     < X Y P(X , Y) 

t t .4 

f t .2 

t f .1 

f f .3 



Most Likely Sequence: Formal Derivation  
 

 Suppose we want to find the most likely path to state xt+1 given e1:t+1.  

max x1,...xt
 P(x1,.... xt ,xt+1| e1:t+1) but this is…. 

max x1,...xt
 P(x1,.... xt ,xt+1, e1:t+1)= max x1,...xt

 P(x1,.... xt ,xt+1,e1:t, et+1)= 

= max x1,...xt
 P(et+1|e1:t, x1,.... xt ,xt+1) P(x1,.... xt ,xt+1,e1:t)= 

   = max x1,...xt
 P(et+1|xt+1) P(x1,.... xt ,xt+1,e1:t)= 

    = max x1,...xt
 P(et+1|xt+1) P(xt+1| x1,.... xt , e1:t)P(x1,.... xt , e1:t)= 

    = max x1,...xt
 P(et+1 |xt+1) P(xt+1|xt) P(x1,.... xt-1 ,xt, e1:t) = 

  P(et+1 |xt+1) max xt
 (P(xt+1|xt) max x1,...xt-1

 P(x1,.... xt-1 ,xt, e1:t))  

Markov Assumption 

Markov Assumption 

Move outside the max 
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Cond. Prob 

Cond. Prob 
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Learning Goals for today’s class 

You can: 

• Describe the smoothing problem and derive a solution by 

manipulating probabilities 

• Describe the problem of finding the most likely sequence 

of states (given a sequence of observations) 

• Derive recursive solution (if time) 
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TODO for Fri 

 

• Keep working on Assignment-2: new due date 
Wed Oct 21 

• Midterm new date Oct 26 

 

 
 


