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Slide credit: some slides adapted from Stuart Russell (Berkeley)
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Lecture Overview

Recap of Forward and Rejection Sampling

Likelihood Weighting

Monte Carlo Markov Chain (MCMC) - Gibbs
Sampling

Application Requiring Approx. reasoning
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Sampling

The building block on any sampling algorithm is the
generation of samples from a known (or easy to
compute, like in Gibbs) distribution

We then use these samples to derive estimates of
probabilities hard-to-compute exactly

And you want consistent sampling methods.... More
samples....Closerto....
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Prior Sampling : ’

P(O)
+C 0.5
-C 0.5
P(S|C) P(R|C)
+c | +s | 0.1 +c | +r | 0.8
s |09 L0z
C +S 0.5 c +r 0.2
s [ 0.5 r | 0.8
P(W|S, R) Samples:
+S +r +w | 0.99
w | 0.01 +C, -S, *1, tw
r +w | 0.90 -C, +S, -r, +w
-W 0.10
-S +r +wW 0.90
-W 0.10
-r tw_| 0.01 CPSC 422, Lecture 12
-w | 0.99




Example

We’'ll get a bunch of samples from the BN:
+C, -S, +I, +W

-C, +S, +r, -w

-C, -S, -I, tw

From these samples you can compute any
distribution involving the five vars....
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Example

Can estimate anything else from the samples, besides P(W), P(R) , etc:
+C, -S, +r, +W
+c, +s, +r, +w
-C, +s, +r, -w

CCloudy 3
e = =
« What about P(C{+W)? P(CC Grororns

Y ~C L -C +Cjc
Ao ] B [.S.S] clio]

D, None o} +he 6'00\/6

Can use/generate fewer samples when we want to
estimate a probability conditioned on evidence?
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Rejection Sampling

Let’s say we want P(W]| +s)
* ignore (reject) samples which don'’t

have S=+s
* This is called rejection sampling +C. -5, +1 +W
* |tis also consistent for conditional +C, +S, 41, tw
probabilities (i.e., correct in the limit) fé,i: i[ Yy
-C, -S, -I,+w

But what happens if +s is rare?
And if the number of evidence vars grows.......

A. Less samples will be rejected

B. More samples will be rejected

C. The same number of samples will be rejected 8



Likelihood Weighting

Problem with rejection sampling:
* |f evidenceis unlikely, you reject a lot of samples
* You don'’t exploit your evidence as you sample
* Consider P(B|+a)

Burglary @

|dea: fix evidence variables and sample the rest

Problem?:

-b, -a
-b, -a

-b, -a
+h, +a

-b +a
-b, +a
-b, +a
-b, +a
+b, +a

Solution: weight by probability of evidence given parents
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Likelihood Weighting

P(S|C)
+c | +s | 0.1
-s 0.9
-c | +s [ 0.5
-s | 0.5

P(W|S, R)

+5 +r +W 0.99

-W 0.01

-r +W 0.90

-W 0.10

-S +r +W 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(C)

+C

0.5

-C

0.5

P(R|C)

+c | +r | 0.8

Samples:

+c +s I +wW

w = 1.0x0.1x0.99
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Likelihood Weighting

P(C)
+C 0.5
-C 0.5
P(S|C) P(R|C)
+c | +s | 0.1 +c | +r [ 0.8
s |10.9 -r [ 0.2
c | +s [0.5 c | +r |02
s |05 -r [ 0.8
P(W|5, R)
s +r | +w | 0.99 What would be the

w | 001 weight for this . 1.
T | +w | 0.90 sample? iclicker.
-w_| 0.10 +C, +S, -, +W
s | +r [ +w | 0.90
v 010 A 0.08 Boo02 / C. 0.005
-r +w | 0.01
-w_| 0.99
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Likelihood Weighting

Likelihood weighting is good
* We have taken evidence into account as we generate the sample

* All our samples will reflect the state of the world suggested by the
evidence

* Uses all samples that it generates (much more efficient than
rejection sampling)

Likelihood weighting doesn’t solve all our problems

* Evidence influences the choice of downstream variables, but no
upstreamones (C isn’t more likely to get a value matching the evidence)

* Degradation in performance with large number of evidence vars -> each
sample small weight

We would like to consider evidence when we sample every
variable
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Lecture Overview

Recap of Forward and Rejection Sampling
Likelihood Weighting

Monte Carlo Markov Chain (MCMC) - Gibbs
Sampling

Application Requiring Approx. reasoning
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Markov Chain Monte Carlo

/dea:instead of sampling from scratch, create samples that
are each like the last one (only randomly change one var).

Procedure:resample one variable at a time, conditioned on all
the rest, but keep evidence fixed. E.g., for P(B|+c):

D@

+b, +a, +C

Sample b
- b, +a, +C

Sample a
- b, -a, +c

Sample b
- b, -a, +C

PP

Sample a
- b, -a, +c

Sample b
+ Db, -a, +C

CPSC422,Lecture 12
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Markov Chain Monte Carlo

Properties:Now samples are not independent (in fact
they’re nearly identical), but sample averages are still
consistent estimators! And can be computed efficiently

What's the point: when you sample a variable conditioned

on all the rest, both upstream and downstream variables
condition on evidence. QJ) @P
\

G

Openissue: what does it mean to sample a variable
conditioned on all the rest ?

CPSC422,Lecture 12
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Sample for X is conditioned on all the rest

vy e yEe

/@\Sf %@ /@\gé‘ b /C\gé ®
{4 ?@& 7 4 m%o 2 s /\W

A. | need to consider all the other nodes
B. | only need to consider its Markov Blanket

C. I only need to consider all the nodes not in the Markov Blanket
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Sample conditioned on all the rest
¥y ¥y Yy

/ijé %O /@\g}é ® /C\g ®
;o MO ;s mso ;s ”“

A node is conditionally independent from all the other nodes
In the network, given its parents, children, and children’s
parents (i.e., its Markov Blanket) Configuration B
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Probability given the Markov blanket is calculated as follows:

P(xmb(X;)) =0(P[.':'?|;m rents( X;) f]ngg_--;”-,-rg,.,-_.! x, P (z;|parents(Z;))

We want to sample Rain Rain’ s Markov Blanket is?

\
- 0\— ()"A P(C)/Pemﬁ‘

P(R|C)

P(S|C)
P(W|S, R) /— C“‘/G,
Pe]er, 57 w)=f (el P(w | <)

Markov blanket of C'loudy is
Sprinkler and Rain
Markov blanket of Fain is
Cloudy, Sprinkler, and WetGrass

19
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Ple]er 57w )=l P (W )rsT)

P(S|C)
+c | +s | 0.1
-s 0.9
-c | +s [ 0.5
-s | 0.5
P(W|S, R)

+5 +r +w 0.99

-W 0.01

-r +W 0.90

-W 0.10

=S +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

s
!

We want to
sample Rain

P(C)

+C 0.5

-C 0.5

P(R|C)

+c | +r | 0.8
-r 0.2

-c | +r 1 0.2
-r

avp)
AR R

~O§£?ZZ OOZ:J [om;l OOBj

20
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MCMC Example

Estimate P( Rain|Sprinkler =true, WetGrass =true)

Sample C'loudy or Fain given its Markov blanket, repeat.
Count number of times FHain is true and false in the samples.

E.g., Do it 100 times
31 have Hain=true, 69 have Hain = false

P(Rain \Sprinkler =true, WetGrass =true)
= NORMALIZE((31,69)) = (0.31, 0.69)
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Why it is called Markov Chain MC

With Sprinkler =true, WetGrass =true, there are four states:

States of the
chain are
possible
samples (fully
Instantiated
Bnet)

Wander about for a while, average what you see

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly

proportional to its posterior probability ..given the evidence Slide 23
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Learning Goals for today’s class

>»YOoUu can:

« Describe and justify the Likelihood Weighting sampling
method

« Describe and justify Markov Chain Monte Carlo sampling
method

CPSC 422, Lecture 12 Slide 24



TODO for Wed

 Nextresearch paper: Using Bayesian Networks to
Manage Uncertainty in Student Modeling. Journal of
User Modeling and User-Adapted Interaction
2002 Dynamic BN (required only up to page 400)

*Follow instructions on course WebPage
<Readings>

« Keep working on assignment-2 (due on Fri, Oct 16)
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http://link.springer.com/article/10.1023/A:1021258506583

Not Required

a. There are several ways to prove this. Probably the sunplest 1s to work directly from the
global semantics. First, we rewrite the required probability 1n terms of the full joint:

P Plxy..... 1)
e N P P B gy B e P =
T N L. v e eogalyy
Plri..... Tn )
> Plag... ., Tpl

T F
[1;_1 Plz;j|parentsX;)
iy F
5. [—1 Pla;|parentsX;)
Now., all terms 1n the product in the denominator that do not contain ; can be moved
outside the summation. and then cancel with the corresponding terms in the numerator.

This just leaves us with the terms that do mention x;. 1.2 those m which X; 1s a cluld
or a parent. Hence, P(x;|xq

ey T 1, P15 Ty ) 15 equal to
P{x;|parentsX;) n}’jeﬂhiidren(}(@j Ply;|parents(Y;))

Eri PI{I”}?&-?‘E?HEI” n}}EC'hiEdren(Xij Pf‘ﬁﬂj‘]ﬂ?‘fﬂi&“iﬁﬂ
Now, by reversing the argument 1n part (b), we obtain the desired result.
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ANDES: an ITS for Coached problem solving

 The tutor monitors the student’s solution and itervenes
when the student needs help.

* Gives feedback on correctness of student solution entries
* Provides hints when studentis stuck

P ANDES Physics Workbench - [P11-2-Solution. fbd]

ﬂfile Edit Diagram “arable Wiew Help =& x|
w|Ex|a| =2 25 2]l -] E

Wariables
A 2000-kyg car in neutral at the top of a 20-degree inclined —
driveway 20 m long slips its parking brake and rolls down. Mame | Definition _ [ #-Camp | Y":C"'ﬂﬂ
Assume that the driveway is frictionless. =) 0 car starts raling
bt T1 car hite garage door
At what speed will it hit the garage door? W ome mass of car

W Fw maagritude of the ‘Weight For...

Answer: I

y =

l <o

Think about the directionof N...
have a complete free body diagram for the car.

Explain futher  Hide CPSC 422, Lecgture 12 ° Slide 27
melp, press F1 I—IWI—IW Y

[+

||l (@] [ ] ] o




Student Model for Coached Problem
Solving

Three main functions

— Assess from the student’s actions her domain
knowledge, to decide which concepts the student
needs help on

— Infer from student’s actions the solution being
followed, to understand what the student is trying to
do

— Predict what further gcfions should be suggested {0

422, Lecture 1 e 28

the student, to provide meaningful suggestions



Several sources of uncertainty

Same action can belong to different solutions

Often much of the reasoning behind the student’s
actions is hidden from the tutor

Correct answers can be achieved through guessing
Errors can be due to slips

System’s help affects learning

In many domains, there is flexible solution step
order

CPSC422,Lecture 12 Slide 29
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Case Study: LW on Andes

Conati C., Gertner A., VanLehn K., Druzdzel M. (1997). On-Line Student Modeling for
Coached Problem Solving Using Bayesian Networks . In Jameson A., Paris C., Tasso C.,
(eds.) User Modeling; Proceedings of the sixth International Conference UM97.

Andes’ networks include anywhere between 100 and 1000 nodes

* (You’ll know more about it after reading the paper for next class)
Update needs to happen in real time

« Starts each time a student performs a new action

* Needs to be done when the student asks for help

Exact algorithms would often not be done when needed.

« Everything would stop until the algorithm was done

« \kry intrusive for the student

Sampling algorithms have the advantage of being anytime algorithms
« They can give you an answer anytime

« The answer gets better the longer you wait

So they seemed a good alternative for Andes


http://www.cs.ubc.ca/~conati/my-papers/um97.pdf
http://www.cs.ubc.ca/~conati/my-papers/um97.pdf
http://www.cs.ubc.ca/~conati/my-papers/um97.pdf
http://www.cs.ubc.ca/~conati/my-papers/um97.pdf
http://www.cs.ubc.ca/~conati/my-papers/um97.pdf

Case Studv: LW on Andes

N Mumber FEun time
Precision of samples {seconds)
=£0.1 | 374,000 400)
0.2 362,000 | 40)
=+0.3 5.000 30

Tested on a network with 110 nodes
* Run exact algorithm to get “true” probabilities

« Checked the number of samples and running times to get all nodes in the
network within 0.1, 0.2, and 0.3 of the exact probability with all actions in the
solution as evidence

Many networks in Andes have 5 to 10 times the nodes of our test network,
and running time of LW increases linearly with the number of nodes

« It may take several minutes to update nodes in larger networks to a high
precision



Y VYV

Case Study: LW on Andes

Can still be OK when students think before asking for help after an action.

Also, LW reaches

» 0.3 precision for all nodes when 98% of the nodes where already at 0.2
precision, and 66% of the nodes where at 0.1 precision

« 0.2 precision for all nodes when 98% of the nodes where already at 0.1 precision

Could have still been acceptable in most cases — we were planningto run
studies to compute the average waiting time

But then we found an exact algorithm that works well for most of our
networks. ..



Next Tuesday

First discussion-based class

Paper (available on-line from class schedule):

* Conati C., Gertner A., VanLehn K., 2002. Using
Bayesian Networks to Manage Uncertainty in Student

Modeling. User Modeling and User-Adapited Interaction.
12(4) p. 371-417.

Make sure to have at least two questions on
this reading to discuss In class.

- See syllabus for more details on what questions should
look like

Send your questions to *both™ conati@cs.ubc.ca
and ssuther@cs.ubc.ca by 9am on Tuesday.

« . CPSC422,] ecture 12 . Slide 33
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