Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 11

Oct, 2, 2015

CPSC 422, Lecture 11

422 big picture: Where are we?

Hybrid: Det +Sto

Prob CFG Prob Relational Models Markov Logics

	Deterministic	Stochastic	Markov L	ogics
Query - Plannin	Logics First Order Logics Ontologies Temporal rep. • Full Resolution • SAT	Belief Nets Approx. : Gibbs Markov Chains and Forward, Viterbi Approx. : Particle F Undirected Graphica Markov Networks Conditional Randor Markov Decision Pro Partially Observable	<i>HMMs</i> Filtering <i>Models</i> <i>m Fields</i> <i>acesses and</i> <i>MDP</i>	
		Value Iteratio Approx Infer		
г		Reinforcement Lea	arning	Representation
Applicat		ons of Al		Reasoning Technique

Lecture Overview

- Recap of BNs Representation and Exact Inference
- Start Belief Networks Approx. Reasoning
 - Intro to Sampling
 - First Naïve Approx. Method: Forward Sampling
 - Second Method: Rejection Sampling

Revise (in)dependencies.....

Independence (Markov Blanket)

What is the minimal set of nodes that must be observed in order to make **node X** independent from all the non-observed nodes in the network

Slide 8

CPSC 422, Lecture 11

Independence (Markov Blanket)

A node is conditionally independent from all the other nodes in the network, given its parents, children, and children's parents (i.e., its **Markov Blanket**) Configuration B

CPSC 422, Lecture 11

Variable elimination algorithm: Summary

To compute $P(Z|Y_1 = v_1, ..., Y_j = v_j)$:

- 1. Construct a factor for each conditional probability.
- 2. Set the observed variables to their observed values.
- 3. Given an <u>elimination ordering</u>, <u>simplify/decompose</u> sum of products
 - For all Z_i : Perform products and sum out Z_i
- 4. Multiply the remaining factors (all in ? Z
- 5. Normalize: divide the resulting factor f(Z) by $\sum_{Z} f(Z)$.

Complexity: Just Intuition.....

- Tree-width of a network given an elimination ordering: max number of variables in a factor created while running VE.
- Tree-width of a belief network : min tree-width over all elimination orderings (only on the graph structure and is a measure of the sparseness of the graph)

- The complexity of VE is exponential in the tree-width and linear in the number of variables.
- Also, finding the elimination ordering with minimum treewidth is NP-hard ③ (but there are some good elimination ordering heuristics)

Lecture Overview

- Recap of BNs Representation and Exact
 Inference
- <u>Start Belief Networks Approx. Reasoning</u>
 - Intro to Sampling
 - First Naïve Approx. Method: Forward Sampling
 - Second Method: Rejection Sampling

Approximate Inference

Basic idea:

- Draw N samples from known prob. distributions
- Use those samples to estimate unknown prob. distributions

Why sample?

• Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

We use Sampling

Sampling is a process to obtain samples adequate to estimate an unknown probability

Estimates for unknown (hard to compute) distribution(s)

Generating Samples from a Known Distribution

For a random variable *X* with

- values {*x*₁,...,*x*_k}
- Probability distribution $P(X) = \{P(x_1), \dots, P(x_k)\}$

Partition the interval [0, 1] into *k* intervals p_i , one for each x_i , with length $P(x_i)$

- To generate one sample
 - Randomly generate a value y in [0, 1] (i.e. generate a value from a uniform distribution over [0, 1].

✓ Select the value of the sample based on the interval p_i that includes y

From probability theory: $P(y \subset p_i) = Length(p_i) = P(x_i)$

$$x P(x)$$

 $x 2q, b, c \frac{3}{6} \cdot \frac{3}{6} \cdot \frac{3}{6}$

Count total number of samples *m* Count the number n_i of samples x_i Generate the frequency of sample x_i as n_i/m This frequency is your estimated probability of x_i

Sampling for Bayesian Networks (N)

Suppose we have the following BN with two binary variables

A=0 B=1

A=0 Pi=s

B -1

 \succ It corresponds to the joint probability distribution

• P(A,B) = P(B|A)P(A)

\succ To sample from this unknown distribution

- we first sample from P(A). Suppose we get A = 0.
- In this case, we then sample from $\mathbb{P}(B | A = 0)$
- If we had sampled A = 1 then in the second step we would have sampled from P(B | A = 1)

Prior (Forward) Sampling

23

Example

We'll get a bunch of samples from the BN:

+C, -S, +r, +W +C, +S, +r, +W -C, +S, +r, -W +C, -S, +r, +W -C, -S, -r, +W

If we want to know P(W)

- We have counts <+w:4, -w:1>
- Normalize to get P(W) = $\langle +w : 2 \rangle$
- This will get closer to the true distribution with more samples

Example

Can estimate anything else from the samples, besides P(W), P(R), etc:

Can use/generate fewer samples when we want to estimate a probability conditioned on evidence?

CPSC 422, Lecture 11

Rejection Sampling

Let's say we want P(S|+w)

- Ignore (reject) samples which don't have W=+w
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)

See any problem as the number of evidence vars increases?

Hoeffding's inequality

Suppose *p* is the true probability and *s* is the sample average from *n* independent samples.

$$P(|s-p| > \varepsilon) \le 2e^{-2n\varepsilon}$$

- > p above can be the probability of any event for random variable $X = {X_1, ..., X_n}$ described by a Bayesian network
- > If you want an infinitely small probability of having an error greater than ε , you need infinitely many samples
- But if you settle on something less than infinitely small, let's say δ, then you just need to set

$$2e^{-2n\varepsilon^2} < \delta$$

- So you pick
 - the error ε you can tolerate,
 - the frequency δ with which you can tolerate it
- And solve for *n*, i.e., the number of samples that can ensure this performance $\int_{-\infty}^{\infty} \delta$

$$n > \frac{-\ln\frac{\delta}{2}}{2\varepsilon^2} \qquad (1)$$

Hoeffding's inequality

> Examples:

• You can tolerate an error greater than 0.1 only in 5% of your cases

 $n > \frac{-\ln \frac{o}{2}}{2\varepsilon^2}$

con rewrite (

- Set $\varepsilon = 0.1$, $\delta = 0.05$
- Equation (1) gives you n > 184

- If you can tolerate the same error (0.1) only in 1% of the cases, then you need 265 samples
- If you want an error greater than 0.01 in no more than 5% of the cases, you need 18,445 samples
 So it should be clear that
 I goes down
 I goes down
 I goes up

Learning Goals for today's class

≻You can:

- Motivate the need for approx inference in Bnets
- Describe and compare Sampling from a single random variable
- Describe and Apply Forward Sampling in BN
- Describe and Apply Rejection Sampling
- Apply Hoeffding's inequality to compute number of samples needed

TODO for Mon

- Read textbook 6.4.2
- Keep working on assignment-2
- Next research paper will be this coming Wed

Rejection Sampling

Let's say we want P(C)

- No point keeping all samples around
- Just tally counts of C as we go

Let's say we want P(C|+s)

- Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit) CPSC 422, Lecture 11

+C, -S, +r, +W +C, +S, +r, +W -C, +S, +r, -W +C, -S, +r, +W -C, -S, -r, +W

