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Intelligent Systems (AI-2) 
 

Computer Science cpsc422, Lecture 11 

 

Oct, 2, 2015 



422 big picture: Where are we? 

Query 

Planning 

Deterministic Stochastic 

• Value Iteration 

• Approx. Inference 

• Full Resolution 

• SAT 

Logics 
Belief Nets 

Markov Decision Processes  and   
Partially Observable MDP 

Markov Chains and HMMs First Order Logics 

Ontologies 
Temporal rep. 

Applications of AI 

Approx. : Gibbs 

 

Undirected Graphical Models 
 Markov Networks 
  Conditional Random Fields 

Reinforcement Learning Representation 

Reasoning 

Technique 

Prob CFG 
Prob  Relational Models 
Markov Logics 

Hybrid: Det +Sto 

Forward, Viterbi…. 

Approx. : Particle Filtering 
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Lecture Overview 

• Recap of BNs Representation and Exact 

Inference 

• Start Belief Networks Approx. Reasoning 

• Intro to Sampling 

• First Naïve Approx. Method: Forward 

Sampling 

• Second Method: Rejection Sampling 
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 



Revise (in)dependencies…… 
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Independence (Markov Blanket) 
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What is the minimal set of nodes that must be 

observed in order to make node X independent 

from all the non-observed nodes in the network 



Independence (Markov Blanket) 

A node is conditionally independent from all the other nodes 

in the network, given its parents, children, and children’s 

parents (i.e., its Markov Blanket )  Configuration B 
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Variable elimination algorithm: Summary 

To compute P(Z| Y1=v1 ,… ,Yj=vj ) : 

1. Construct a factor for each conditional probability. 

2. Set the observed variables to their observed values. 

3. Given an elimination ordering, simplify/decompose 
sum of products 

• For all Zi  :  Perform products and sum out Zi  

4. Multiply the remaining factors (all in ?                ) 

5. Normalize: divide the resulting factor f(Z)  by Z f(Z) . 
 

P(Z,  Y1…,Yj ,   Z1…,Zj   ) 

Z 
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Variable elimination ordering 

P(G,D=t) = A,B,C, f(A,G) f(B,A) f(C,G,A) f(B,C) 
 

P(G,D=t) = A f(A,G) B f(B,A) C f(C,G,A) f(B,C) 
 

P(G,D=t) = A f(A,G) C f(C,G,A) B f(B,C) f(B,A)  
 

Is there only one way to simplify? 
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Complexity: Just Intuition….. 

• Tree-width of a network given an elimination ordering: max 

number of variables in a factor created while running VE.  

• Tree-width of a belief network : min tree-width over all 

elimination orderings (only on the graph structure and is a 

measure of the sparseness of the graph) 

• The complexity of VE is exponential in the tree-width  

and linear in the number of variables.  

• Also, finding the elimination ordering with minimum tree-

width is NP-hard  (but there are some good elimination 

ordering heuristics) 
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Lecture Overview 

• Recap of BNs Representation and Exact 

Inference 

• Start Belief Networks Approx. Reasoning 

• Intro to Sampling 

• First Naïve Approx. Method: Forward 

Sampling 

• Second Method: Rejection Sampling 

 

 

 

 



Approximate Inference 
 

Basic idea: 

• Draw N samples from known prob. distributions 

• Use those samples to estimate unknown prob. 
distributions 

 
 

Why sample? 

• Inference: getting a sample is faster than computing 
the right answer (e.g. with variable elimination) 
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We use Sampling 

Sampling is a process to obtain samples adequate 

to estimate an unknown probability 

 

 

 

 

 

 

 

 

Known prob. distribution(s) 

 

 

 

 

 

 
Estimates for unknown (hard to compute) distribution(s) 

 

 

 

 

 

 

 

 

Samples 

 

 

 

 

 

 

How do we get 
samples?  

 

 

 

 

 

 



Generating Samples from a Known Distribution 

For a random variable X with  

• values {x1,…,xk} 

• Probability distribution P(X) = {P(x1),…,P(xk)} 

Partition the interval [0, 1] into k intervals pi , one for each xi , 

with length P(xi ) 

To generate one sample 
Randomly generate  a value y  in [0, 1] (i.e. generate a value from a 

uniform distribution over [0, 1]. 

 Select the  value of the sample  based on the interval pi  that includes y 

From probability theory: 

 

)()()( iii xPpLengthpyP 



From Samples to Probabilities 

Count total number of samples m 

Count the number ni of samples xi 

Generate the frequency of sample xi as ni / m 

This frequency is your estimated probability of xi 



Sampling for Bayesian Networks (N) 

 Suppose we have the following BN with two binary 

variables 

 It corresponds to the joint probability distribution  

• P(A,B) =P(B|A)P(A) 

To sample from this unknown distribution 
• we first sample from P(A). Suppose we get A = 0. 

• In this case, we then sample from…. 

• If we had sampled A = 1, then in the second step we would have sampled 

from 

 

A 

B 

0.3 

P(A=1) 

0.7 

0.1 

1 

0 

P(B=1|A) A 



Prior (Forward)  Sampling 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 

23 

+c 0.5 
-c 0.5 

+c 
 

+s 0.1 

-s 0.9 

-c 
 

+s 0.5 
-s 0.5 

+c 
 

+r 0.8 

-r 0.2 

-c 
 

+r 0.2 
-r 0.8 

+s 
 
 
 

+r 
 

+w 0.99 
-w 0.01 

-r 
 

+w 0.90 
-w 0.10 

-s 
 
 
 

+r 
 

+w 0.90 
-w 0.10 

-r 
 

+w 0.01 
-w 0.99 

Samples: 

+c, -s, +r, +w 

-c, +s, -r, +w 

… 
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Example 

We’ll get a bunch of samples from the BN: 

 +c, -s, +r, +w 

 +c, +s, +r, +w 

 -c, +s, +r,  -w 

 +c, -s, +r, +w 

 -c,  -s,  -r, +w 

If we want to know P(W) 

• We have counts <+w:4, -w:1> 

• Normalize to get P(W) =  

• This will get closer to the true distribution with more samples 

24 
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Cloudy 

Sprinkler Rain 

WetGrass 



Example 
Can estimate anything else from the samples, besides P(W), P(R) , etc: 

 +c, -s, +r, +w 

 +c, +s, +r, +w 

 -c, +s, +r,  -w 

 +c, -s, +r, +w 

 -c,  -s,  -r, +w 

• What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)? 
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Cloudy 

Sprinkler Rain 

WetGrass 

Can use/generate fewer samples when we want to 

estimate a probability conditioned on evidence? 



Rejection Sampling 
 

Let’s say we want P(S| +w) 

• Ignore (reject) samples which don’t 

have W=+w 

• This is called rejection sampling 

• It is also consistent for conditional 

probabilities (i.e., correct in the limit) 
 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w 
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C 

S R 

W 

See any problem as the number of 

evidence vars increases? 



Hoeffding’s inequality 
 Suppose p is the true probability and s is the sample average from n 

independent samples.  

 

 p above can be the probability of any event  for random variable X = 
{X1,…Xn} described by a Bayesian network 

 

 
 If you want an infinitely small probability of having an error greater 

than ε,  you need infinitely many samples 

 But if you settle on something less than infinitely small, let’s say δ, 

then you just need to set 

 

 So you pick  

• the error ε you can tolerate,  

• the frequency δ with which you can tolerate it 

  And solve for n, i.e., the number of samples that can ensure this 

performance  
 (1)

222)|(|  nepsP 

  222 ne



Hoeffding’s inequality 

Examples: 
• You can tolerate an error greater than 0.1 only in 5% of your cases 

• Set ε =0.1,  δ = 0.05 

• Equation (1) gives you n > 184 

 If you can tolerate the same error (0.1) only in 1% of the cases, then 

you need 265 samples 

 If you want an error greater than  0.01 in no more than 5% of the 

cases, you need 18,445 samples  

 (1)
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Learning Goals for today’s class 

You can: 

• Motivate the need for approx inference in Bnets 

• Describe and compare Sampling from a single random 

variable 

• Describe and Apply Forward Sampling in BN 

• Describe and Apply Rejection Sampling 

• Apply Hoeffding's inequality to compute number of 

samples needed 
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TODO for Mon 

 

• Read textbook 6.4.2 

• Keep working on assignment-2 

• Next research paper will be this coming Wed 

 

 
 



Rejection Sampling 

Let’s say we want P(C) 

• No point keeping all samples around 

• Just tally counts of C as we go 

 

Let’s say we want P(C| +s) 

• Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 

have S=+s 

• This is called rejection sampling 

• It is also consistent for conditional 

probabilities (i.e., correct in the limit) 

 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w 
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W 


