Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 11

Oct, 2, 2015

422 big picture: Where are we?

Deterministic

Logics	Belief Nets
	Approx. : Gibbs
First Order Logics	Markov Chains and HMMs
Ontologies Temporal rep.	Forward, Viterbi.... Approx. : Particle Filtering
- Full Resolution - SAT	Undirected Graphical Models Markov Networks Conditional Random Fields
	Markov Decision Processes Partially Observable MDP

Stochastic
Belief Nets
Approx. : Gibbs
Markov Chains and HMMs Forward, Viterbi....
Approx. : Particle Filtering
Undirected Graphical Models Markov Networks
Conditional Random Fields
Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning
Applications of AI

Representation
Reasoning
Technique

Lecture Overview

- Recap of BNs Representation and Exact Inference
- Start Belief Networks Approx. Reasoning
- Intro to Sampling
- First Naïve Approx. Method: Forward Sampling
- Second Method: Rejection Sampling

Realistic BNet: Liver Diagnosis

Revise (in)dependencies......

Independence (Markov Blanket)

What is the minimal set of nodes that must be irclicker. observed in order to make node \mathbf{X} independent from all the non-observed nodes in the network

Independence (Markov Blanket)

A node is conditionally independent from all the other nodes in the network, given its parents, children, and children's parents (ie., its Markov Blanket) Configuration B

Variable elimination algorithm: Summary

To compute $P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$:

1. Construct a factor for each conditional probability.
2. Set the observed variables to their observed values.
3. Given an elimination ordering, simplify/decompose sum of products

- For all Z_{i} : Perform products and sum out Z_{i}

4. Multiply the remaining factors (all in ? $Z \quad$)
5. Normalize: divide the resulting factor $f(Z)$ by $\Sigma_{Z} f(Z)$.

Variable elimination ordering

$$
\begin{aligned}
& P(G, D=t)=\Sigma_{A, B, C,} f(A, G) f(B, A) f(C, G, A) f(B, C) \\
& \text { CBA } \\
& \Sigma_{A} f(A, G) \mid \Sigma_{B} f(B, A) \Sigma_{C} f(C, G, A) f(B, C) \\
& \text { BCA } \\
& \sum_{A} f(A, G) \sum_{C} f(C, G, A) \sum_{B} f(B, C) f(B, A)
\end{aligned}
$$

Complexity: Just Intuition.....

- Tree-width of a network given an elimination ordering: max number of variables in a factor created while running VE.
- Tree-width of a belief network : min tree-width over all elimination orderings (only on the graph structure and is a measure of the sparseness of the graph)
- The complexity of VE is exponential in the tree-width $)^{\circ}$ and linear in the number of variables.
- Also, finding the elimination ordering with minimum treewidth is NP-hard : (but there are some good elimination ordering heuristics)

Lecture Overview

- Recap of BNs Representation and Exact Inference
- Start Belief Networks Approx. Reasoning
- Intro to Sampling
- First Naïve Approx. Method: Forward Sampling
- Second Method: Rejection Sampling

Approximate Inference

Basic idea:

- Draw N samples from known prob. distributions
- Use those samples to estimate unknown prob. distributions

Why sample?

- Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

We use Sampling

Sampling is a process to obtain samples adequate

 to estimate an unknown probability
How do we get samples?

Known prob. distribution(s)

Samples

\longleftarrow

Estimates for unknown (hard to compute) distribution(s)

Generating Samples from a Known Distribution

For a random variable X with

- values $\left\{x_{1}, \ldots, x_{k}\right\}$
- Probability distribution $P(X)=\left\{P\left(x_{1}\right), \ldots, P\left(x_{k}\right)\right\}$

Partition the interval $[0,1]$ into k intervals p_{i}, one for each x_{i}, with length $\mathrm{P}\left(x_{i}\right)$
To generate one sample
\checkmark Randomly generate a value y in $[0,1]$ (i.e. generate a value from a uniform distribution over [0, 1].
\checkmark Select the value of the sample based on the interval p_{i} that includes y
From probability theory: $P\left(y \subset p_{i}\right)=\operatorname{Length}\left(p_{i}\right)=P\left(x_{i}\right)$

From Samples to Probabilities

Count total number of samples m
Count the number n_{i} of samples x_{i}
Generate the frequency of sample x_{i} as n_{i} / m
This frequency is your estimated probability of x_{i}

Sampling for Bayesian Networks (N)

$>$ Suppose we have the following BN with two binary variables

A	$\mathrm{P}(\mathrm{B}=1 \mid \mathrm{A})$	
1	0.7	.3
0	0.1	.9

$>$ It corresponds to the joint probability distribution

- $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$
$>$ To sample from this unknown distribution
- we first sample from $P(A)$. Suppose we ge $A=0$.
- In this case, we then sample from.... $P(B \mid A=0)$

$$
\begin{array}{ll}
A=0 & B=1 \\
A=0 & B=1 \\
A=1 & B=1
\end{array}
$$

- If we had sampled $A=1$, then in the second step we would have sampled from

Prior (Forward) Sampling

Example

We'll get a bunch of samples from the BN :

$$
\begin{aligned}
& +c,-s,+r,+w \\
& +c,+s,+r,+w \\
& -c,+s,+r,-w \\
& +c,-s,+r,+w \\
& -c,-s,-r,+w
\end{aligned}
$$

If we want to know $\mathrm{P}(\mathrm{W})$

- We have counts <+w:4, -w:1>
- Normalize to get $P(W)=\langle+w: .8,-w: .2\rangle$
- This will get closer to the true distribution with more samples

Example

Can estimate anything else from the samples, besides $P(W), P(R)$, etc:

$$
\begin{aligned}
& +c,-s,+r,+w \\
& +c,+s,+r,+w \\
& -c,+s,+r,-w \\
& +c,-s,+r,+w \\
& -c,-s,-r,+w
\end{aligned}
$$

- What about $P(C \mid+w)$? $P(C \mid+r,+w)$? $P(C \mid-r,-w)$?

$$
\begin{gathered}
A \cdot\left[\begin{array}{cc}
+c & -c \\
0 & 1
\end{array}\right] \quad B \cdot\left[\begin{array}{cc}
+c-c \\
& -5.5
\end{array}\right] \quad C \cdot\left[\begin{array}{c}
+c-c \\
1
\end{array} 0\right] \\
D \cdot \text { None of the above }
\end{gathered}
$$

iclicker.

Can use/generate fewer samples when we want to estimate a probability conditioned on evidence?

Rejection Sampling

Let's say we want $\mathrm{P}(\mathrm{S} \mid+\mathrm{w})$

- Ignore (reject) samples which don't have $\mathrm{W}=+\mathrm{w}$
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)

See any problem as the number of evidence vars increases?

$$
\begin{aligned}
& +c,-S,+i,+w \\
& +c,+S,+r,+w \\
& -c,+S,+i,-w \\
& +c,-S,+r,+w \\
& -c,-S,-r,+w
\end{aligned}
$$

Hoeffding's inequality

$>$ Suppose p is the true probability and s is the sample average from n independent samples.

$$
P(|s-p|>\varepsilon) \leq 2 e^{-2 n \varepsilon^{2}}
$$

$>p$ above can be the probability of any event for random variable $X=$ $\left\{X_{1}, \ldots X_{n}\right\}$ described by a Bayesian network
> If you want an infinitely small probability of having an error greater than $\mathcal{\varepsilon}$, you need infinitely many samples
$>$ But if you settle on something less than infinitely small, let's say δ, then you just need to set

$$
2 e^{-2 n \varepsilon^{2}}<\delta
$$

$>$ So you pick

- the error ε you can tolerate,
- the frequency δ with which you can tolerate it
$>$ And solve for n, i.e., the number of samples that can ensure this performance

$$
\begin{equation*}
n>\frac{-\ln \frac{\delta}{2}}{2 \varepsilon^{2}} \tag{1}
\end{equation*}
$$

Hoeffding's inequality

> Examples:

- You can tolerate an error greater than 0.1 only in 5% of your cases
- Set $\varepsilon=0.1, \delta=0.05$
- Equation (1) gives you $\mathrm{n}>184$

$$
\begin{equation*}
n>\frac{-\ln \frac{\delta}{2}}{2 \varepsilon^{2}} \tag{1}
\end{equation*}
$$

> If you can tolerate the same error (0.1) only in 1% of the cases, then you need 265 samples
$>$ If you want an error greater than 0.01 in no more than 5% of the cases, you need 18,445 samples

$n \pi$

Learning Goals for today's class

$>$ You can:

- Motivate the need for approx inference in Bnets
- Describe and compare Sampling from a single random variable
- Describe and Apply Forward Sampling in BN
- Describe and Apply Rejection Sampling
- Apply Hoeffding's inequality to compute number of samples needed

TODO for Mon

- Read textbook 6.4.2
- Keep working on assignment-2
- Next research paper will be this coming Wed

Rejection Sampling

Let's say we want $\mathrm{P}(\mathrm{C})$

- No point keeping all samples around

- Just tally counts of C as we go

Let's say we want $\mathrm{P}(\mathrm{C} \mid+\mathrm{s})$

- Same thing: tally C outcomes, but ignore (reject) samples which don't have $\mathrm{S}=+\mathrm{s}$

$$
\begin{aligned}
& +c,-s,+r,+w \\
& +c,+s,+r,+w \\
& -c,+s,+r,-w \\
& +c,-s,+r,+w \\
& -c,-s,-r,+w
\end{aligned}
$$

- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)

