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422 big picture: Where are we?

Hybrid: Det +Sto

Prob CFG
Prob Relational Models
Deterministic Stochastic Markov Logics
Belief Nets
Logics . Approx. : Gibbs
First OrderLogics || Markov Chains and HMMs
Onfologies Forward, Viterbi....
Query | Temporal rep. Approx. : Particle Filtering
« Full Resolution Undirected Graphical Models
« SAT Markov Networks
Conditional Random Fields
Markov Decision Processes and
Planning Partially Observable MDP
« Value Iteration
« Approx. Inference :
Reinforcement Learning Representation
Reasoning

Applications of Al

Technique




Lecture Overview

* Recap of BNs Representation and Exact
Inference

« Start Belief Networks Approx. Reasoning

* Intro to Sampling

* First Naive Approx. Method: Forward
Sampling

« Second Method: Rejection Sampling
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Revise (in)dependencies......
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Independence (Markov Blanket)

¥ gf ¥y V¥

¥ Nd/O\O /@xﬁ‘ O /C\gé O
" N IRN

;o § 4 ?)60 ;o bzso

What is the minimal set of nodes that must be
observed in order to make node X independent

from all the non-observed nodes in the network
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Independence (Markov Blanket)
¥ gf Ve VY
/%5& O f’\ié D /C\Sé D
" N IRN
;o § 4 bbo ;o bzso

A node is conditionally independent from all the other nodes
In the network, given its parents, children, and children’s
parents (i.e., its Markov Blanket ) Configuration B
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Variable elimination algorithm: Summary

To compute P(Z] Y,=v,,... ,Y~V;):
1. Construct a factor for each conditional probability.

2. Set the observed variables to their observed values.

3. Given an elimination ordering, simplify/decompose
sum of products

* For all Z : Perform products and sum out Z

\

4. Multiply the rem\a_ining factors (allin ? [ Z )
5. Normalize: divide the resulting factor 72) by 2> #Z2).




&

Variable elimination ordering

P(G,D=t) = 5, 5., A.G) fB,A) #C,G,A) (B,C)

L
CRA Y < —\
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Complexity: Just Intuition.....

« Tree-width of a network given an elimination ordering: max
number of variables in a factor created while running VE.

* Tree-width of a belief network : min tree-width over all

elimination orderings (only on the graph structure and is a
measure of the sparseness of the graph)

« The complexity of VE is exponential in the tree-width ®
and linear in the number of variables.

* Also, finding the elimination ordering with minimum tree-

width is NP-hard ® (but there are some good elimination
ordering heuristics)



Lecture Overview

* Recap of BNs Representation and Exact
Inference

« Start Belief Networks Approx. Reasoning

* Intro to Sampling

* First Naive Approx. Method: Forward
Sampling

« Second Method: Rejection Sampling
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Approximate Inference

Basic idea:
* Draw N samples from known prob. distributions

* Use those samples to estimate unknown prob.
distributions

Why sample?

* Inference: getting a sample is faster than computing
the right answer (e.g. with variable elimination)
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We use Sampling

Sampling is a process to obtain samples adequate
to an unknown probability

How do we get
samples?

Known prob. distribution(s)
Samples —

{

Estimates for unknown (hard to compute) distribution(s)



Generating Samples from a Known Distribution

For a random variable X'with
* values {x,,...,.x}
* Probability distribution P(X) = {P(x,),...,P(x,)}
Partition the interval [0, 1] into kintervals p;, one for each x;,
with length P(x;)
To generate one sample

v Randomly generate a value y in [0, 1] (i.e. generate a value from a
uniform distribution over [0, 1].

v' Select the value of the sample based on the interval p; that includes y
From probability theory: P(y < p,) = Length(p,) = P(X;)
? Q\ E l) C
x TG W &2_ ; (193
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9 53 5, S, 54)‘
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From Samples to Probabilities &

X

X1

Xk

probability

total

ny/m

N/ m

y Com T

0D Zparz

1D 258
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total J2 00
6.4&.?600: S0

4209

Count total number of samples m

Count the number n;of samples x;

Generate the frequency of sample x;as n,/m
This frequency is your estimated probability of x;



Sampling for Bayesian Networks (N)

» Suppose we have the following BN with two binary

variables 0 P(A=1) | Fld=o))

0.3 2,7 |
A P(B=L1|A) |
el 0.7 3 e ‘i Kot
—0 0.1 i‘/ P d (Sd“(t\lgu (lj\ Ouns

» |t corresponds to the joint probability distribution
 P(A,B) =P(B|A)P(A)

I P - -0 P-
» To sample from this unknown distribution /_f o=
« we first sample from P(A). Suppose we ge&_A =0.) 4 i} '0 g/f'-’
- :‘

* In this case, we then sample from.... (B3 )/‘} r0>
 |If we had sampled'A = 1) then in the second step we would have sampled

from p [} ]A <



Prior (Forward) Sampling

P(S|C)
+c | +s [ 0.1
-s [ 0.9
-c | +s [ 0.5
-s [ 0.5
P(W|S, R)

+S +r +w | 0.99

-W 0.01

-r +w | 0.90

-W 0.10

- +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(C
+C 0.5
-C 0.5

P(R|C)

+c | +r | 0.8

r | 0.2

c | +r [0.2

r | 0.8

Samples:

+C, -S, +I, +tW
-C, S, I, +W
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Example

We’'ll get a bunch of samples from the BN:
+C, -S, +r, +w

-C, +S, +r, -W

-C, -S, -I, +W

If we want to know P(W) @

* \We have counts <+w:4, -w:1>
* Normalize to get P(W) =(+w: - & W >
* This will get closer to the true distribution with more samples
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Example

Can estimate anything else from the samples, besides P(W), P(R) , etc:
+C, -S, +r, +W
+C, +s, +r, +W

-C, +s, +r, -w
+C, -8, +r, +W
o w'@
e What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
A tC -C rC-C T
AR e
D, )\fomé ot +he 6'00\/6

Can use/generate fewer samples when we want to
estimate a probability conditioned on evidence?
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Rejection Sampling

Let’'s say we want P(S| +w)

* |[gnore (reject) samples which don't
have W=+w

* This is called rejection sampling

* |tis also consistent for conditional
probabilities (i.e., correct in the limit)

See any problem as the number of
evidence vars increases?
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Hoeffding’s inequality

Suppose pis the true probability and sis the sample average from n

independent samples. ,
P(s—pl>¢e)<2e™™

p above can be the probability of any event for random variable X =
{X,...X }described by a Bayesian network

If you want an infinitely small probability of having an error greater
than g you need infinitely many samples

But if you settle on something less than infinitely small, let’s say 9,
then you just need to set o2
267 <o

So you pick
» the error £ you can tolerate,
» the frequency © with which you can tolerate it
And solve for 1, i.e., the number of samples that can ensure this

performance i
— I =

o=
T 2g?



Hoeffding’s inequality

» Examples:
* You can tolerate an error greater than 0.1 only in 5% of your cases
« Sete=0.1, 6=0.05

3
 Equation (1) gives you n > 184 n> — n7 (1)
Y

A

Cown ewrie v
25 @>
» If you can tolerate the same error (0.1) only in 1% of the cases, then |
you need 265 samples

» If you want an error greater than 0.01 in no more than 5% of the
cases, you need 18,445 samples o ould Le

c\ea< that

! AEs dow
N gses up




Learning Goals for today’s class

>»YOou can:

« Motivate the need for approx inference in Bnets

« Describe and compare Sampling from a single random
variable

 Describe and Apply Forward Sampling in BN
« Describe and Apply Rejection Sampling

« Apply Hoeffding's inequality to compute number of
samples needed
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TODO for Mon

 Read textbook 6.4.2

« Keep working on assignment-2

 Nextresearch paper will be this coming Wed

CPSC 422, Lecture 11 Slide 30



Rejection Sampling

Let’'s say we want P(C)
* No point keeping all samples around
e Just tally counts of C as we go

Let’'s say we want P(C| +s)

+C, -S, +I, +W

e Same thing: tally C outcomes, but +C, +S, +I, +W
ignore (reject) samples which don’t -C, +S, +I, -W
+C’ -S, +r1 +wW

have S=+s T

* This is called rejection sampling

* |t is also consistent for conditional

probabilities (i.e., correct in the limit)
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