# Intelligent Systems (AI-2)

### Computer Science cpsc422, Lecture 10

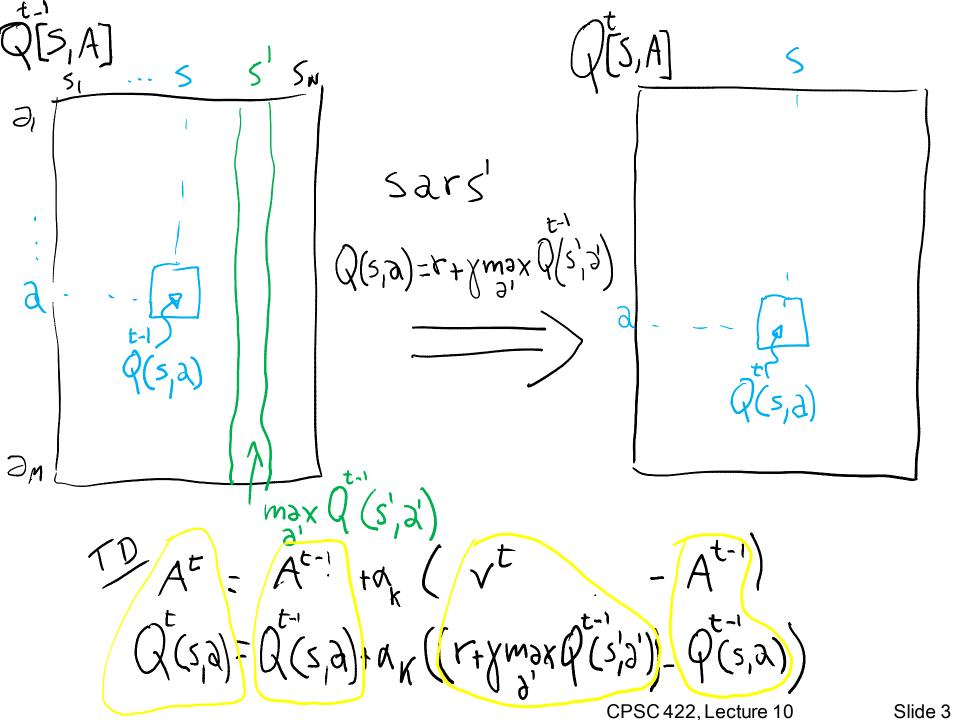
Sep, 30, 2015



#### **Lecture Overview**

### Finish Reinforcement learning

- Exploration vs. Exploitation
- On-policy Learning (SARSA)
- Scalability



Clarification on the  $\alpha_{\kappa_{s_{\lambda}}}$ experiences

## What Does Q-Learning learn

Q-learning does not explicitly tell the agent what to do....

Given the Q-function the agent can......

.... either exploit it or explore more....

Any effective strategy should

- Choose the predicted best action in the limit
- Try each action an unbounded number of times
- We will look at two exploration strategies
  - ε-greedy
  - soft-max

#### **Soft-Max**

- When in state **s**, Takes into account improvement in estimates of expected reward function Q[s,a] for all the actions
  - Choose action a in state s with a probability proportional to current estimate of Q[s,a]

$$\frac{e^{Q[s,a]}}{\sum_{a} e^{Q[s,a]}}$$

$$\frac{e^{Q[s,a]/\tau}}{\sum_{a}e^{Q[s,a]/\tau}}$$

- > τ (tau) in the formula above influences how randomly values should be chosen
  - if  $\tau$  is high,  $\Rightarrow$  Q[s,a]?



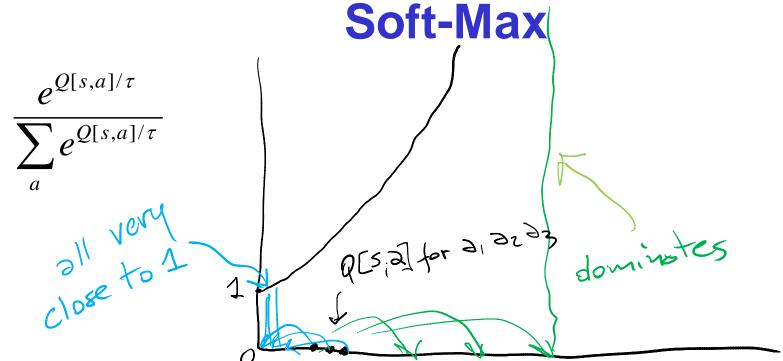
- A. It will mainly exploit
- **B.** It will mainly explore
- C. It will do both with equal probability

#### **Soft-Max**

- Takes into account improvement in estimates of expected reward function Q[s,a]
  - Choose action a in state s with a probability proportional to current estimate of Q[s,a]

$$\frac{e^{Q[s,a]/\tau}}{\sum_a e^{Q[s,a]/\tau}}$$

- > \tau (tau) in the formula above influences how randomly values should be chosen
  - if T is high, the exponentials approach 1, the fraction approaches 1/(number of actions), and each action has approximately the same probability of being chosen (exploration or exploitation?)
  - as  $\tau \to 0$ , the exponential with the highest Q[s,a] dominates, and the current best action is always chosen (exploration or exploitation?)



- > \tau (tau) in the formula above influences how randomly values should be chosen
  - if T is high, the exponentials approach 1, the fraction approaches 1/(number of actions), and each action has approximately the same probability of being chosen (exploration or exploitation?)
  - as  $\tau \to 0$ , the exponential with the highest Q[s,a] dominates, and the current best action is always chosen (exploration or exploitation?)

#### **Lecture Overview**

### Finish Reinforcement learning

- Exploration vs. Exploitation
- On-policy Learning (SARSA)
- RL scalability

## Learning before vs. during deployment

- Our learning agent can:
  - A. act in the environment to learn how it works (before deployment)
  - B. Learn as you go (after deployment)
- ➤ If there is time to learn before deployment, the agent should try to do its best to learn as much as possible about the environment
  - even engage in locally suboptimal behaviors, because this will guarantee reaching an optimal policy in the long run
- ➤ If learning while "at work", suboptimal behaviors could be costly

## Example

- Consider, for instance, our sample grid game:
  - the optimal policy is to go up in S<sub>0</sub>
  - But if the agent includes some exploration in its policy (e.g. selects 20% of its actions randomly), exploring in S<sub>2</sub> could be dangerous because it may cause hitting the -100 wall
- -100 S<sub>2</sub> S<sub>3</sub> -1 S<sub>0</sub> S<sub>1</sub> -1
- No big deal if the agent is not deployed yet, but not ideal otherwise
- Q-learning would not detect this problem
  - It does off-policy learning, i.e., it focuses on the optimal policy
- On-policy learning addresses this problem

## **On-policy learning: SARSA**

- On-policy learning learns the value of the policy being followed.
  - e.g., act greedily 80% of the time and act randomly 20% of the time
  - Better to be aware of the consequences of exploration has it happens, and avoid outcomes that are too costly while acting, rather than looking for the true optimal policy

#### > SARSA

- So called because it uses <state, action, reward, state, action>
   experiences rather than the <state, action, reward, state> used by
   Q-learning
- Instead of looking for the best action at every step, it evaluates the actions suggested by the current policy
- Uses this info to revise it

### **On-policy learning: SARSA**

➢ Given an experience <s,a,r,s',a'>, SARSA updates Q[s,a] as follows

$$Q[s,a] \leftarrow Q[s,a] + \alpha((r + \gamma Q[s',a']) - Q[s,a])$$

What's different from Q-learning?

### **On-policy learning: SARSA**

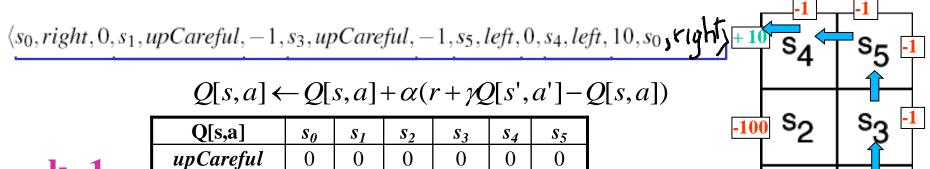
➤ Given an experience <s ,a, r, s', a'>, SARSA updates Q[s,a] as follows

$$Q[s,a] \leftarrow Q[s,a] + \alpha((r + \gamma Q[s',a']) - Q[s,a])$$

While Q-learning was using

$$Q[s,a] \leftarrow Q[s,a] + \alpha((r + \gamma \max_{a'} Q[s',a']) - Q[s,a])$$

➤ There is no more max operator in the equation, there is instead the Q-value of the action suggested by the current policy



#### k=1

| Q[s,a]    | $s_{o}$ | $s_1$ | $s_2$ | $s_3$ | S4 | $s_5$ |
|-----------|---------|-------|-------|-------|----|-------|
| upCareful | 0       | 0     | 0     | 0     | 0  | 0     |
| Left      | 0       | 0     | 0     | 0     | 0  | 0     |
| Right     | 0       | 0     | 0     | 0     | 0  | 0     |
| Up        | 0       | 0     | 0     | 0     | 0  | 0     |

$$Q[s_0, right] \leftarrow Q[s_0, right] + \alpha_k(r + 0.9Q[s_1, UpCareful] - Q[s_0, right]);$$

$$Q[s_0, right] \leftarrow$$

$$Q[s_1, upCarfull] \leftarrow Q[s_1, upCarfull] + \alpha_k(r + 0.9Q[s_3, UpCareful] - Q[s_1, upCarfull]);$$

$$Q[s_1, upCarfull] \leftarrow$$

$$\begin{aligned} Q[s_3, upCarfull] \leftarrow Q[s_3, upCarfull] + \alpha_k(r + 0.9Q[s_5, Left] - Q[s_3, upCarfull]); \\ Q[s_3, upCarfull] \leftarrow 0 + 1(-1 + 0.9*0 - 0) = -1 \end{aligned}$$

$$Q[s_5, Left] \leftarrow Q[s_5, Left] + \alpha_k(r + 0.9Q[s_4, left] - Q[s_5, Left]);$$
  
 $Q[s_5, Left] \leftarrow 0 + 1(0 + 0.9 * 0 - 0) = 0$ 

$$Q[s_4, Left] \leftarrow Q[s_4, Left] + \alpha_k(r + 0.9Q[s_0, Right] - Q[s_4, Left]);$$
  
 $Q[s_4, Left] \leftarrow 0 + 1(10 + 0.9*0 - 0) = 10$ 

Only immediate rewards are included in the update, as with Q-learning

20



$$Q[s,a] \leftarrow Q[s,a] + \alpha(r + \gamma Q[s',a'] - Q[s,a])$$

#### k=2

| Q[s,a]    | $s_{\theta}$ | $s_1$ | $s_2$ | $s_3$ | S <sub>4</sub> | $s_5$ |
|-----------|--------------|-------|-------|-------|----------------|-------|
| upCareful | 0            | -1    | 0     | -1    | 0              | 0     |
| Left      | 0            | 0     | 0     | 0     | 10             | 0     |
| Right     | 0            | 0     | 0     | 0     | 0              | 0     |
| Up        | 0            | 0     | 0     | 0     | 0              | 0     |

$$Q[s_0, right] \leftarrow Q[s_0, right] + \alpha_k(r + 0.9Q[s_1, UpCareful] - Q[s_0, right]);$$

$$Q[s_0, right] \leftarrow$$

SARSA backs up the expected reward of the next action, rather than the max expected reward

 $s_2$ 

$$Q[s_1, upCarfull] \leftarrow Q[s_1, upCarfull] + \alpha_k(r + 0.9Q[s_3, UpCareful] - Q[s_1, upCarfull]);$$
  
 $Q[s_1, upCarfull] \leftarrow$ 

$$Q[s_3, upCarfull] \leftarrow Q[s_3, upCarfull] + \alpha_k(r + 0.9Q[s_5, Left] - Q[s_3, upCarfull]);$$
  
 $Q[s_3, upCarfull] \leftarrow -1 + 1/2(-1 + 0.9*0 + 1) = -1$ 

$$Q[s_5, Left] \leftarrow Q[s_5, Left] + \alpha_k(r + 0.9Q[s_4, left] - Q[s_5, Left]);$$
  
 $Q[s_5, Left] \leftarrow 0 + 1/2(0 + 0.9*10 - 0) = 4.5$ 

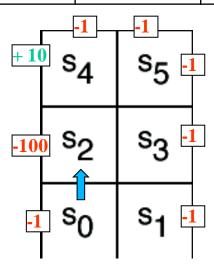
$$Q[s_4, Left] \leftarrow Q[s_4, Left] + \alpha_k(r + 0.9Q[s_0, Right] - Q[s_4, Left]);$$
  
 $Q[s_4, Left] \leftarrow 10 + 1/2(10 + 0.9*0 - 10) = 10$ 

## **Comparing SARSA and Q-learning**

For the little 6-states world

Policy learned by Q-learning 80% greedy is to go up in s₀ to reach s₄ quickly and get the big +10 reward

| Iterations | Q[s <sub>0</sub> ,Up] | Q[s <sub>1</sub> ,Up] | Q[s <sub>2</sub> ,UpC] | Q[s <sub>3</sub> ,Up] | Q[s <sub>4</sub> ,Left] | Q[s <sub>5</sub> ,Left] |
|------------|-----------------------|-----------------------|------------------------|-----------------------|-------------------------|-------------------------|
| 40000000   | 19.1                  | 17.5                  | 22.7                   | 20.4                  | 26.8                    | 23.7                    |

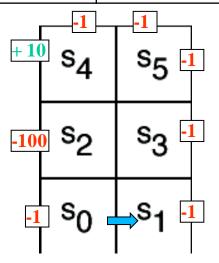


• Verify running full demo, see http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html

## Comparing SARSA and Q-learning

- $\triangleright$  Policy learned by SARSA 80% greedy is to go *right* in s<sub>0</sub>
- $\triangleright$  Safer because avoid the chance of getting the -100 reward in  $s_2$
- ➤ but non-optimal => lower q-values

| Iterations | Q[s <sub>0</sub> ,Right] | Q[s <sub>1</sub> ,Up] | Q[s <sub>2</sub> ,UpC] | Q[s <sub>3</sub> ,Up] | Q[s <sub>4</sub> ,Left] | Q[s <sub>5</sub> ,Left] |
|------------|--------------------------|-----------------------|------------------------|-----------------------|-------------------------|-------------------------|
| 40000000   | 6.8                      | 8.1                   | 12.3                   | 10.4                  | 15.6                    | 13.2                    |



CPSC 422, Lecture 10

• Verify running full demo, see http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html

## **SARSA Algorithm**

#### begin

end

initialize Q[S,A] arbitrarily observe current state s select action a using a policy based on Q

#### repeat forever:

end-repeat

carry out an action a observe reward r and state s' select action a' using a policy based on Q  $Q[s,a] \leftarrow Q[s,a] + \alpha \left(r + \gamma Q[s',a'] - Q[s,a]\right)$   $s \leftarrow s';$   $a \leftarrow a';$ 

This could be, for instance any  $\varepsilon$ -greedy strategy:

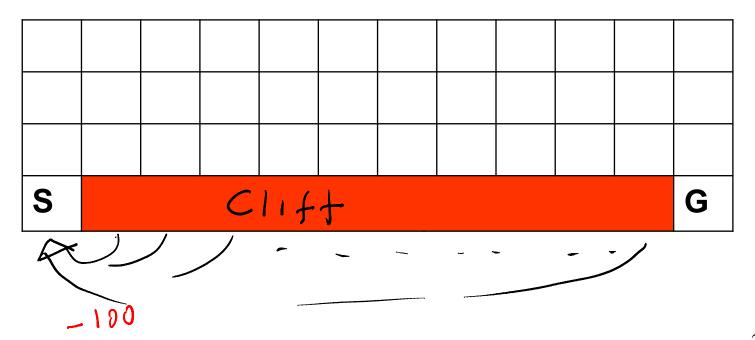
-Choose random  $\epsilon$  times, and max the rest

If the random step is chosen here, and has a bad negative reward, this will affect the value of Q[s,a].

Next time in s, a may no longer be the action selected because of its lowered Q value

## **Another Example**

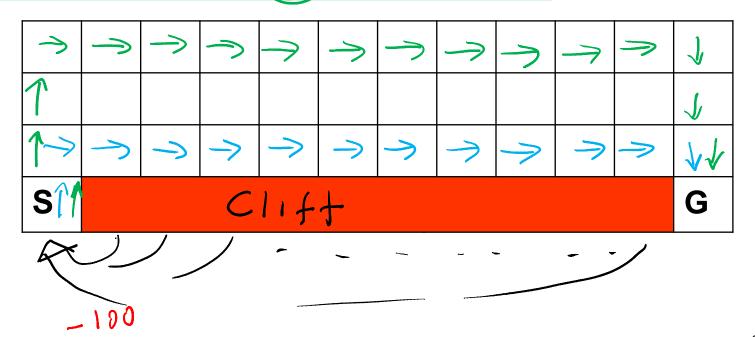
- Gridworld with:
  - Deterministic actions up, down, left, right
  - Start from S and arrive at G (terminal state with reward > 0)
  - Reward is -1 for all transitions, except those into the region marked "Cliff
    - ✓ Falling into the cliff causes the agent to be sent back to start: r = -100



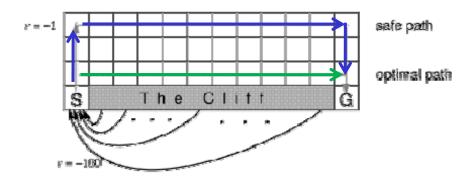
 $\triangleright$  With an  $\epsilon$ -greedy strategy (e.g.,  $\epsilon$  =0.1)



- A. SARSA will learn policy p1 while Q-learning will learn p2
- B. Q-learning will learn policy p1 while SARSA will learn p2
  - C. They will both learn p1
  - D. They will both learn p2

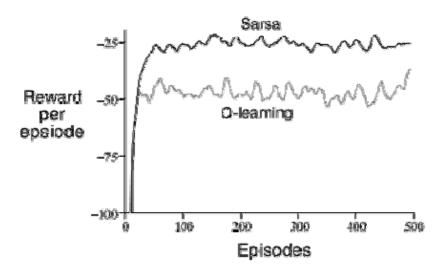


## **Cliff Example**



- ➤ Because of **negative reward for every step taken**, the optimal policy over the four standard actions is to take the shortest path along the cliff
- $\triangleright$  But if the agents adopt an ε-greedy action selection strategy with ε=0.1, walking along the cliff is dangerous
  - The optimal path that considers exploration is to go around as far as possible from the cliff

## **Q-learning vs. SARSA**



- Q-learning learns the optimal policy, but because it does so without taking exploration into account, it does not do so well while the agent is exploring
  - It occasionally falls into the cliff, so its reward per episode is not that great
- SARSA has better on-line performance (reward per episode), because it learns to stay away from the cliff while exploring
  - But note that if ε→0, SARSA and Q-learning would asymptotically converge to the optimal policy

#### 422 big picture: Where are we?

Hybrid: Det +Sto

Prob CFG
Prob Relational Models
Markov Logics

**Deterministic** 

**Stochastic** 

Query

Logics First Order Logics

Ontologies Temporal rep.

- Full Resolution
- SAT

**Belief Nets** 

Approx.: Gibbs

Markov Chains and HMMs

Forward, Viterbi....

Approx.: Particle Filtering

Undirected Graphical Models Conditional Random Fields

Planning

Markov Decision Processes and Partially Observable MDP

- Value Iteration
- Approx. Inference

Reinforcement Learning

Applications of Al

Representation

Reasoning Technique

CPSC 322, Lecture 34

Slide 30

## Learning Goals for today's class

#### > You can:

- Describe and compare techniques to combine exploration with exploitation
- On-policy Learning (SARSA)
- Discuss trade-offs in RL scalability (not required)

#### **TODO for Fri**

- Read textbook 6.4.2
- Next research paper will be next Wed
- Practice Ex 11.B

#### **Problem with Model-free methods**

➤ Q-learning and SARSA are model-free methods

What does this mean?

#### **Problems With Model-free Methods**

- ➤ Q-learning and SARSA are model-free methods
  - They do not need to learn the transition and/or reward model, they are implicitly taken into account via experiences
- > Sounds handy, but there is a main disadvantage:
  - How often does the agent get to update its Q-estimates?

#### **Problems with Model-free Methods**

- ➤ Q-learning and SARSA are model-free methods
  - They do not need to learn the transition and/or reward model, they are implicitly taken into account via experiences
- > Sounds handy, but there is a main disadvantage:
  - How often does the agent get to update its Q-estimates?
  - Only after a new experience comes in
  - Great if the agent acts very frequently, not so great if actions are sparse, because it wastes computation time

#### **Model-based methods**

- > Idea
  - learn the MDP and interleave acting and planning.
- > After each experience,
  - update probabilities and the reward,
  - do some steps of value iteration (asynchronous) to get better estimates of state utilities U(s) given the current model and reward function
  - Remember that there is the following link between Q values and utility values

$$U(s) = \max_{a} Q(a, s)$$
 (1)  

$$Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a)U(s')$$
 (2)

$$Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$
CPSC 422, Lecture 10

## VI algorithm

```
function Value-Iteration(mdp, \epsilon) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' \mid s, a), rewards R(s), discount \gamma
\epsilon, the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero \delta, the maximum change in the utility of any state in an iteration repeat U \leftarrow U'; \delta \leftarrow 0
```

$$U'[s] \leftarrow R(s) \ + \ \gamma \ \max_{a \ \in A(s)} \ \sum_{s'} P(s' \mid s, a) \ U[s']$$
 if  $|U'[s] - U[s]| \ > \ \delta \ \text{then} \ \delta \leftarrow |U'[s] - U[s]|$  until  $\delta \ < \ \epsilon (1 - \gamma)/\gamma$  return  $U$ 

for each state s in S do

## **Asynchronous Value Iteration**

- The "basic" version of value iteration applies the Bellman update to all states at every iteration
- This is in fact not necessary
  - On each iteration we can apply the update only to a chosen subset of states
  - Given certain conditions on the value function used to initialize the process, asynchronous value iteration converges to an optimal policy
- Main advantage
  - one can design heuristics that allow the algorithm to concentrate on states that are likely to belong to the optimal policy
  - Much faster convergence

## **Asynchronous VI algorithm**

function Value-Iteration  $(mdp, \epsilon)$  returns a utility function inputs: mdp, an MDP with states S, transition model T, reward function R, discount  $\gamma$   $\epsilon$ , the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero  $\delta$ , the maximum change in the utility of any state in an iteration

```
repeat U \leftarrow U'; \, \delta \leftarrow 0 for some state s in S do U'[s] \leftarrow R[s] \, + \, \gamma \, \max_{a} \, \sum_{s'} \, T(s,a,s') \, \, U[s'] if |U'[s] - U[s]| > \delta then \delta \leftarrow |U'[s] - U[s]| until \delta < \epsilon (1-\gamma)/\gamma return U
```

## Model-based RL algorithm

## Model Based Reinfortcement Learner inputs:

S is a set of states, A is a set of actions,  $\gamma$  the discount, c is a prior count internal state:

real array Q[S,A], R[S,A,S'] integer array T[S,A,S'] previous state s previous action a

initialize Q[S, A] arbitrarily initialize R[S, A, S] arbitrarily initialize T[S, A, S] to zero observe current state s select and carry out action a repeat forever:

observe reward r and state s' select and carry out action a

$$T[s, a, s'] \leftarrow T[s, a, s'] + 1$$

$$R[s, a, s'] \leftarrow R[s, a, s'] + \frac{r - R[s, a, s']}{T[s, a, s']}$$

 $s \leftarrow s'$ 

repeat

select state  $s_1$ , action  $a_1$ let  $P = \sum_{c_1} (T[s_1, a_1, s_2] + c)$ 

$$Q[s_1, a_1] \leftarrow \sum_{s_2} \frac{T[s_1, a_1, s_2] + c}{P} \left( R[s_1, a_1, s_2] + \gamma \max_{a_2} Q[s_2, a_2] \right)$$

until an observation arrives

Frequency of transition from s<sub>1</sub> CPSC+122, A<sub>1</sub> ecture 10

Counts of events when action a performed in s generated s'

TD-based estimate of R(s,a,s')

Asynchronous value iteration steps

What is this c for?

Why is the reward inside the summation?

#### **Discussion**

- ➤ Which Q values should asynchronous VI update?
  - At least s in which the action was generated
  - Then either select states randomly, or
  - States that are likely to get their Q-values changed because they can reach states with Q-values that have changed the most
- ➤ How many steps of asynchronous value-iteration to perform?

#### **Discussion**

- ➤ Which states to update?
  - At least s in which the action was generated
  - Then either select states randomly, or
  - States that are likely to get their Q-values changed because they can reach states with Q-values that have changed the most
- ➤ How many steps of asynchronous value-iteration to perform?
  - As many as can be done before having to act again

## Q-learning vs. Model-based

- ➤ Is it better to learn a model and a utility function or an action value function with no model?
  - Still an open-question
- Model-based approaches require less data to learn well, but they can be computationally more expensive (time per iteration)
- ➤ Q-learning takes longer because it does not enforce consistency among Q-values via the model
  - Especially true when the environment becomes more complex
  - In games such as chess and backgammon, model-based approaches have been more successful that q-learning methods
- Cost/ease of acting needs to be factored in