
CPSC 422, Lecture 10 Slide 1

Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 10

Sep, 30, 2015

CPSC 422, Lecture 10 2

Lecture Overview

Finish Reinforcement learning

• Exploration vs. Exploitation

• On-policy Learning (SARSA)

• Scalability

CPSC 422, Lecture 10 Slide 3

Clarification on the ak

CPSC 422, Lecture 10 4

What Does Q-Learning learn

 Q-learning does not explicitly tell the agent what to do….

 Given the Q-function the agent can……

 …. either exploit it or explore more….

Any effective strategy should

• Choose the predicted best action in the limit

• Try each action an unbounded number of times

• We will look at two exploration strategies

• ε-greedy

• soft-max

CPSC 422, Lecture 10 5

Soft-Max
 When in state s, Takes into account improvement in estimates

of expected reward function Q[s,a] for all the actions

• Choose action a in state s with a probability proportional to current
estimate of Q[s,a]

],[

],[


a

asQ

asQ

e

e

 τ (tau) in the formula above influences how randomly values

should be chosen

• if τ is high, >> Q[s,a]?

CPSC 422, Lecture 10 8

A. It will mainly exploit

B. It will mainly explore

C. It will do both with equal probability

/],[

/],[


a

asQ

asQ

e

e




Soft-Max
 Takes into account improvement in estimates of expected

reward function Q[s,a]

• Choose action a in state s with a probability proportional to current
estimate of Q[s,a]

/],[

/],[


a

asQ

asQ

e

e




 τ (tau) in the formula above influences how randomly values

should be chosen

• if τ is high, the exponentials approach 1, the fraction approaches
1/(number of actions), and each action has approximately the same
probability of being chosen (exploration or exploitation?)

• as τ → 0, the exponential with the highest Q[s,a] dominates, and the
current best action is always chosen (exploration or exploitation?)

CPSC 422, Lecture 10 9

Soft-Max

/],[

/],[


a

asQ

asQ

e

e




 τ (tau) in the formula above influences how randomly values

should be chosen

• if τ is high, the exponentials approach 1, the fraction approaches
1/(number of actions), and each action has approximately the same
probability of being chosen (exploration or exploitation?)

• as τ → 0, the exponential with the highest Q[s,a] dominates, and the
current best action is always chosen (exploration or exploitation?)

CPSC 422, Lecture 10 10

CPSC 422, Lecture 10 11

Lecture Overview

Finish Reinforcement learning

• Exploration vs. Exploitation

• On-policy Learning (SARSA)

• RL scalability

Learning before vs. during deployment

 Our learning agent can:

A. act in the environment to learn how it works (before
deployment)

B. Learn as you go (after deployment)

 If there is time to learn before deployment, the agent

should try to do its best to learn as much as possible about

the environment

• even engage in locally suboptimal behaviors, because this will
guarantee reaching an optimal policy in the long run

 If learning while “at work”, suboptimal behaviors could be

costly

CPSC 422, Lecture 10 13

Example
 Consider, for instance, our sample grid

game:

• the optimal policy is to go up in S0

• But if the agent includes some exploration in its
policy (e.g. selects 20% of its actions randomly),
exploring in S2 could be dangerous because it
may cause hitting the -100 wall

• No big deal if the agent is not deployed yet, but
not ideal otherwise

+ 10

-100

-1 -1

-1

-1

-1 -1

 Q-learning would not detect this problem

• It does off-policy learning, i.e., it focuses on the optimal policy

 On-policy learning addresses this problem

CPSC 422, Lecture 10 14

On-policy learning: SARSA

 On-policy learning learns the value of the policy being

followed.

• e.g., act greedily 80% of the time and act randomly 20% of the time

• Better to be aware of the consequences of exploration has it
happens, and avoid outcomes that are too costly while acting,
rather than looking for the true optimal policy

 SARSA

• So called because it uses <state, action, reward, state, action>
experiences rather than the <state, action, reward, state> used by
Q-learning

• Instead of looking for the best action at every step, it evaluates the
actions suggested by the current policy

• Uses this info to revise it

 CPSC 422, Lecture 10 15

On-policy learning: SARSA

 Given an experience <s,a,r,s’,a’ >, SARSA updates Q[s,a]

as follows

]),[])','[((],[],[asQasQrasQasQ  a

What’s different from Q-learning?

CPSC 422, Lecture 10 16

On-policy learning: SARSA

 Given an experience <s ,a, r, s’, a’>, SARSA updates

Q[s,a] as follows

]),[])','[((],[],[asQasQrasQasQ  a

 While Q-learning was using

 There is no more max operator in the equation, there is

instead the Q-value of the action suggested by the current

policy

]),[])','[max((],[],[
'

asQasQrasQasQ
a

 a

CPSC 422, Lecture 10 17

]),[]','[(],[],[asQasQrasQasQ  a

0)00*9.00(10],[

]);,[],[9.0(],[],[

0

0100





rightsQ

rightsQUpCarefulsQrrightsQrightsQ ka

1)00*9.01(10],[

]);,[],[9.0(],[],[

1

1311





upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ ka

+ 10

-100

-1 -1

-1

-1

-1 -1

1)00*9.01(10],[

]);,[],[9.0(],[],[

3

3533





upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ ka

0)00*9.00(10],[

]);,[],[9.0(],[],[

5

5455





LeftsQ

LeftsQleftsQrLeftsQLeftsQ ka

10)00*9.010(10],[

]);,[],[9.0(],[],[

4

4044





LeftsQ

LeftsQRightsQrLeftsQLeftsQ ka

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 0 0 0 0 0

Left 0 0 0 0 0 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1 k=1

Only immediate rewards
are included in the update,

as with Q-learning

CPSC 422, Lecture 10
20

]),[]','[(],[],[asQasQrasQasQ  a

9.0)0)1(*9.00(2/10],[

]);,[],[9.0(],[],[

0

0100





rightsQ

rightsQUpCarefulsQrrightsQrightsQ ka

45.1)1)1(*9.01(2/11],[

]);,[],[9.0(],[],[

1

1311





upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ ka

+ 10

-100

-1 -1

-1

-1

-1 -1

1)10*9.01(2/11],[

]);,[],[9.0(],[],[

3

3533





upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ ka

5.4)010*9.00(2/10],[

]);,[],[9.0(],[],[

5

5455





LeftsQ

LeftsQleftsQrLeftsQLeftsQ ka

10)100*9.010(2/110],[

]);,[],[9.0(],[],[

4

4044





LeftsQ

LeftsQRightsQrLeftsQLeftsQ ka

k=1 k=2
Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

SARSA backs up the
expected reward of the next
action, rather than the max
expected reward

CPSC 422, Lecture 10
21

Comparing SARSA and Q-learning

 For the little 6-states world

 Policy learned by Q-learning 80% greedy is to go up in s0

to reach s4 quickly and get the big +10 reward

+ 10

-100

-1 -1

-1

-1

-1 -1

CPSC 422, Lecture 10

22

Iterations Q[s0,Up] Q[s1,Up] Q[s2,UpC] Q[s3,Up] Q[s4,Left] Q[s5,Left]

40000000 19.1 17.5 22.7 20.4 26.8 23.7

• Verify running full demo, see
http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html

Comparing SARSA and Q-learning

 Policy learned by SARSA 80% greedy is to go right in s0

 Safer because avoid the chance of getting the -100 reward in s2

 but non-optimal => lower q-values

+ 10

-100

-1 -1

-1

-1

-1 -1 CPSC 422, Lecture 10

23

Iterations Q[s0,Right] Q[s1,Up] Q[s2,UpC] Q[s3,Up] Q[s4,Left] Q[s5,Left]

40000000 6.8 8.1 12.3 10.4 15.6 13.2

• Verify running full demo, see
http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html

SARSA Algorithm

This could be, for instance any ε-
greedy strategy:
- Choose random ε times, and max
the rest

This could be, for instance any ε-
greedy strategy:
-Choose random ε times, and max
the rest

If the random step is chosen
here, and has a bad negative
reward, this will affect the
value of Q[s,a].

Next time in s, a may no
longer be the action selected
because of its lowered Q
value

CPSC 422, Lecture 10 24

Another Example
 Gridworld with:

• Deterministic actions up, down, left, right

• Start from S and arrive at G (terminal state with reward > 0)

• Reward is -1 for all transitions, except those into the region marked “Cliff”

Falling into the cliff causes the agent to be sent back to start: r = -100

CPSC 422, Lecture 10

25

S G

 With an ε-greedy strategy (e.g., ε =0.1)

CPSC 422, Lecture 10

26

S G

A. SARSA will learn policy p1 while Q-learning will learn p2

B. Q-learning will learn policy p1 while SARSA will learn p2

C. They will both learn p1

D. They will both learn p2

Cliff Example

 Because of negative reward for every step taken, the

optimal policy over the four standard actions is to take the

shortest path along the cliff

 But if the agents adopt an ε-greedy action selection

strategy with ε=0.1, walking along the cliff is dangerous

• The optimal path that considers exploration is to go around as far as
possible from the cliff

CPSC 422, Lecture 10 27

Q-learning vs. SARSA

 Q-learning learns the optimal policy, but because it does so without

taking exploration into account, it does not do so well while the agent is

exploring

• It occasionally falls into the cliff, so its reward per episode is not that great

 SARSA has better on-line performance (reward per episode), because

it learns to stay away from the cliff while exploring

• But note that if ε→0, SARSA and Q-learning would asymptotically converge
to the optimal policy

CPSC 422, Lecture 10 28

422 big picture: Where are we?

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution

• SAT

Logics
Belief Nets

Markov Decision Processes and
Partially Observable MDP

Markov Chains and HMMs First Order Logics

Ontologies
Temporal rep.

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
 Conditional Random Fields

Reinforcement Learning Representation

Reasoning

Technique

Prob CFG
Prob Relational Models
Markov Logics

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering

CPSC 322, Lecture 34 Slide 30

CPSC 422, Lecture 10 Slide 31

Learning Goals for today’s class

You can:

• Describe and compare techniques to combine exploration

with exploitation

• On-policy Learning (SARSA)

• Discuss trade-offs in RL scalability (not required)

CPSC 422, Lecture 10 Slide 32

TODO for Fri

• Read textbook 6.4.2

• Next research paper will be next Wed

• Practice Ex 11.B

Problem with Model-free methods

 Q-learning and SARSA are model-free methods

 What does this mean?

CPSC 422, Lecture 10 33

Problems With Model-free Methods

 Q-learning and SARSA are model-free methods

• They do not need to learn the transition and/or reward model, they are
implicitly taken into account via experiences

 Sounds handy, but there is a main disadvantage:

• How often does the agent get to update its Q-estimates?

CPSC 422, Lecture 10 34

Problems with Model-free Methods

 Q-learning and SARSA are model-free methods

• They do not need to learn the transition and/or reward model, they are
implicitly taken into account via experiences

 Sounds handy, but there is a main disadvantage:

• How often does the agent get to update its Q-estimates?

• Only after a new experience comes in

• Great if the agent acts very frequently, not so great if actions are sparse,
because it wastes computation time

CPSC 422, Lecture 10 35

Model-based methods
 Idea

• learn the MDP and interleave acting and planning.

 After each experience,

• update probabilities and the reward,

• do some steps of value iteration (asynchronous) to get better estimates of
state utilities U(s) given the current model and reward function

• Remember that there is the following link between Q values and utility
values

 (1)),(max)(saQsU
a



(2))'(),|'()(),(
'


s

sUassPs R asQ 


'

'
)','(max),|'()(),(

s
a

asQassPs R asQ 

CPSC 422, Lecture 10 36

VI algorithm

CPSC 422, Lecture 10 37

Asynchronous Value Iteration

 The “basic” version of value iteration applies the Bellman update to

all states at every iteration

 This is in fact not necessary

• On each iteration we can apply the update only to a chosen subset of states

• Given certain conditions on the value function used to initialize the process,
asynchronous value iteration converges to an optimal policy

 Main advantage

• one can design heuristics that allow the algorithm to concentrate on states
that are likely to belong to the optimal policy

• Much faster convergence

CPSC 422, Lecture 10 38

Asynchronous VI algorithm

for some

CPSC 422, Lecture 10 39

Model-based RL algorithm

Model Based Reinfortcement Learner
inputs:
S is a set of states, A is a set of actions, γ the discount, c is a prior count
internal state:
real array Q[S,A], R[S,A, S’]
integer array T[S,A, S’]
previous state s
previous action a

CPSC 422, Lecture 10 40

Counts of events when action
a performed in s generated s’

TD-based estimate of R(s,a,s’)

Asynchronous value
iteration steps

Frequency of transition
from s1 to s2 via a1

Why is the reward
inside the summation?

What is this c for?

CPSC 422, Lecture 10 41

Discussion

Which Q values should asynchronous VI update?

• At least s in which the action was generated

• Then either select states randomly, or

• States that are likely to get their Q-values changed because
they can reach states with Q-values that have changed the
most

How many steps of asynchronous value-iteration to

perform?

CPSC 422, Lecture 10 42

Discussion

Which states to update?

• At least s in which the action was generated

• Then either select states randomly, or

• States that are likely to get their Q-values changed because
they can reach states with Q-values that have changed the
most

How many steps of asynchronous value-iteration to

perform?

• As many as can be done before having to act again

CPSC 422, Lecture 10 43

Q-learning vs. Model-based

 Is it better to learn a model and a utility function or an action

value function with no model?

• Still an open-question

 Model-based approaches require less data to learn well, but they

can be computationally more expensive (time per iteration)

 Q-learning takes longer because it does not enforce consistency

among Q-values via the model

• Especially true when the environment becomes more complex

• In games such as chess and backgammon, model-based approaches have
been more successful that q-learning methods

 Cost/ease of acting needs to be factored in

CPSC 422, Lecture 10 44

