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Lecture Overview 

Finish Reinforcement learning 

• Exploration vs. Exploitation 

• On-policy Learning (SARSA) 

• Scalability 
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Clarification on the ak   
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What Does Q-Learning learn 

 Q-learning does not explicitly tell the agent what to do…. 

 

 Given the Q-function the agent can……  

 …. either exploit it or explore more…. 

Any effective strategy should 

• Choose the predicted best action in the limit 

• Try each action an unbounded number of times 

• We will look at two exploration strategies 

• ε-greedy 

• soft-max 
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Soft-Max 
 When in state s, Takes into account improvement in estimates 

of expected reward function Q[s,a] for all the actions 

• Choose action a in state s with a probability proportional to current 
estimate of Q[s,a] 
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 τ (tau)  in the formula above influences how randomly values 

should be chosen 

• if τ is high,    >> Q[s,a]? 
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A. It will mainly exploit 

B. It will mainly explore 

C. It will do both with equal probability 
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Soft-Max 
 Takes into account improvement in estimates of expected 

reward function Q[s,a] 

• Choose action a in state s with a probability proportional to current 
estimate of Q[s,a] 
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 τ (tau)  in the formula above influences how randomly values 

should be chosen 

• if τ is high, the exponentials approach 1, the fraction approaches 
1/(number of actions), and each action has approximately the same 
probability of being chosen ( exploration or exploitation?) 

•  as τ → 0, the exponential with the highest Q[s,a] dominates, and the 
current best action is always chosen (exploration or exploitation?) 
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Soft-Max 
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 τ (tau)  in the formula above influences how randomly values 

should be chosen 

• if τ is high, the exponentials approach 1, the fraction approaches 
1/(number of actions), and each action has approximately the same 
probability of being chosen ( exploration or exploitation?) 

•  as τ → 0, the exponential with the highest Q[s,a] dominates, and the 
current best action is always chosen (exploration or exploitation?) 
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Lecture Overview 

Finish Reinforcement learning 

• Exploration vs. Exploitation 

• On-policy Learning (SARSA) 

• RL scalability 

 

 

 

 



Learning before vs. during deployment  

 Our learning agent can: 

A. act in the environment to learn how it works (before 
deployment) 

B. Learn as you go (after deployment) 

 If there is time to learn before deployment, the agent 

should try to do its best to learn as much as possible about 

the environment 

• even engage in locally suboptimal behaviors, because this will 
guarantee reaching an optimal policy in the long run 

 If learning while “at work”, suboptimal behaviors could be 

costly  
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Example 
 Consider, for instance, our sample grid 

game:  

• the optimal policy is to go up in S0 

• But if the agent includes some exploration in its 
policy (e.g. selects 20% of its actions randomly), 
exploring in S2 could be dangerous because it 
may cause hitting the -100 wall 

• No big deal if the agent is not deployed yet, but 
not ideal otherwise 
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-1 

-1 
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 Q-learning would not detect this problem  

• It does  off-policy learning, i.e., it focuses on the optimal policy 

 On-policy learning addresses this problem 
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On-policy learning: SARSA 

 On-policy learning learns the value of the policy being 

followed. 

• e.g., act greedily 80% of the time and act randomly 20% of the time 

• Better  to be aware of the consequences of exploration has it 
happens, and avoid outcomes that are too costly while acting, 
rather than looking for the true optimal policy 

 SARSA 

• So called because it uses <state, action, reward, state, action> 
experiences rather than the <state, action, reward, state> used by 
Q-learning 

• Instead of looking for the best action at every step, it evaluates the 
actions suggested by the current policy 

• Uses this info to revise it 
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On-policy learning: SARSA 

 Given an experience <s,a,r,s’,a’ >, SARSA  updates Q[s,a] 

as follows 

 ]),[])','[((],[],[ asQasQrasQasQ  a

What’s different from Q-learning? 
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On-policy learning: SARSA 

 Given an experience <s ,a, r, s’, a’>, SARSA  updates 

Q[s,a] as follows 
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 While Q-learning was using 

 

 There is no more max operator in the equation, there is 

instead the Q-value of the action suggested by the current 

policy 
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Q[s,a] s0 s1 s2 s3 s4 s5 

upCareful 0 0 0 0 0 0 

Left 0 0 0 0 0 0 

Right 0 0 0 0 0 0 

Up 0 0 0 0 0 0 

k=1 k=1 

Only immediate rewards  
are included in the update, 

as with Q-learning  
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upCareful 0 -1 0 -1 0 0 

Left 0 0 0 0 10 0 
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SARSA backs up the 
expected reward of the next 
action, rather than the max 
expected reward 
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Comparing SARSA and Q-learning 

 For the little 6-states world 

 
 Policy learned by Q-learning 80% greedy is to go  up  in s0 

to reach s4 quickly  and get the big +10 reward 
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Iterations Q[s0,Up] Q[s1,Up] Q[s2,UpC] Q[s3,Up] Q[s4,Left] Q[s5,Left] 

40000000 19.1 17.5 22.7 20.4 26.8 23.7 

• Verify running  full demo, see 
http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html 



Comparing SARSA and Q-learning 

 Policy learned by SARSA 80% greedy is to go right in s0  

 Safer because avoid the chance of getting the -100 reward in s2 

 but non-optimal => lower q-values   
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Iterations Q[s0,Right] Q[s1,Up] Q[s2,UpC] Q[s3,Up] Q[s4,Left] Q[s5,Left] 

40000000 6.8 8.1 12.3 10.4 15.6 13.2 

• Verify running  full demo, see 
http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html 



SARSA Algorithm 

This could be, for instance any ε-
greedy strategy: 
- Choose random ε times, and max 
the rest 

This could be, for instance any ε-
greedy strategy: 
-Choose random ε times, and max 
the rest 

If the random step is chosen 
here, and has a bad negative 
reward, this will affect the 
value of Q[s,a]. 
 
Next time in s, a may no 
longer be the action selected 
because of its lowered Q 
value 
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Another Example 
 Gridworld with: 

• Deterministic actions up, down, left, right 

• Start from S and arrive at G (terminal state with reward > 0) 

• Reward is -1 for all transitions, except those into the region marked “Cliff” 

Falling into the cliff causes the agent to be sent back to start: r = -100 
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 With an ε-greedy strategy (e.g., ε =0.1) 
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S G 

A. SARSA will learn policy p1 while Q-learning will learn p2 

B. Q-learning will learn policy p1 while SARSA will learn p2 

C. They will both learn p1 

D. They will both learn p2 



Cliff Example 

 Because of  negative reward for every step taken, the 

optimal policy over the four standard actions is to take the 

shortest path along the cliff 

 But if the agents adopt an ε-greedy action selection 

strategy with ε=0.1, walking along the cliff is dangerous 

• The optimal path that considers exploration is to go around as far as 
possible from the cliff 
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Q-learning vs. SARSA 

 Q-learning learns the optimal policy, but because it does so without 

taking exploration into account, it does not do so well while the agent is 

exploring 

• It occasionally falls into the cliff, so its reward per episode is not that great 

 SARSA has better on-line performance (reward per episode), because 

it learns to stay away from the cliff while exploring 

• But note that if ε→0, SARSA and Q-learning would asymptotically converge 
to the  optimal policy 
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422 big picture: Where are we? 

Query 

Planning 

Deterministic Stochastic 

• Value Iteration 

• Approx. Inference 

• Full Resolution 

• SAT 

Logics 
Belief Nets 

Markov Decision Processes  and   
Partially Observable MDP 

Markov Chains and HMMs First Order Logics 

Ontologies 
Temporal rep. 

Applications of AI 

Approx. : Gibbs 

 

Undirected Graphical Models 
  Conditional Random Fields 

Reinforcement Learning Representation 

Reasoning 

Technique 

Prob CFG 
Prob  Relational Models 
Markov Logics 

Hybrid: Det +Sto 

Forward, Viterbi…. 

Approx. : Particle Filtering 
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Learning Goals for today’s class 

You can: 

• Describe and compare techniques to combine exploration 

with exploitation 

• On-policy Learning (SARSA) 

• Discuss trade-offs in RL scalability (not required) 
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TODO for Fri 

 

• Read textbook 6.4.2 

• Next research paper will be next Wed 

• Practice Ex  11.B  

 

 
 



Problem with Model-free methods 
 

 Q-learning and SARSA are model-free methods 

                    What does this mean? 
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Problems With Model-free Methods 

 Q-learning and SARSA are model-free methods 

• They do not need to learn the transition and/or reward model, they are 
implicitly taken into account via experiences 

 Sounds handy, but there is a main disadvantage: 

• How often does the agent get to update its Q-estimates? 

CPSC 422, Lecture 10 34 



Problems with Model-free Methods 

 Q-learning and SARSA are model-free methods 

• They do not need to learn the transition and/or reward model, they are 
implicitly taken into account via experiences 

 Sounds handy, but there is a main disadvantage: 

• How often does the agent get to update its Q-estimates? 

• Only after a new experience comes in 

• Great if the agent acts very frequently, not so great if actions are sparse, 
because it wastes computation time 
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Model-based methods 
 Idea 

•  learn the MDP and interleave acting and planning. 

 After each experience,  

• update probabilities and the reward,  

• do some steps of value iteration (asynchronous ) to get better estimates of 
state utilities U(s)  given the current model and reward function 

• Remember that there is the following link between Q values and utility 
values 
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VI algorithm 
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Asynchronous Value Iteration 

 The “basic” version of value iteration applies the Bellman update to 

all states at every iteration 

 This is in fact not necessary 

• On each iteration we can apply the update only to a chosen subset of states 

• Given certain conditions on the value function used to initialize the process, 
asynchronous value iteration converges to an optimal policy 

 
 Main advantage  

•  one can design heuristics that allow the algorithm to concentrate on states 
that are likely to belong to the optimal policy 

 

• Much faster convergence 
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Asynchronous VI algorithm 

for some 
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Model-based RL algorithm 

Model Based Reinfortcement Learner 
inputs: 
S is a set of states, A is a set of actions, γ the discount, c is a prior count 
internal state: 
real array Q[S,A], R[S,A, S’] 
integer array T[S,A, S’] 
previous state s 
previous action a 
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Counts of events when action 
a performed in s generated s’ 

TD-based estimate of R(s,a,s’) 

Asynchronous value 
iteration steps 

Frequency of transition 
from s1 to s2 via a1 

Why is the reward 
inside the summation? 

What is this c for? 
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Discussion 

Which Q values should asynchronous  VI update? 

• At least s in which the action was generated 

• Then either select states randomly, or  

• States that are likely to get their Q-values changed because 
they can reach states with Q-values that have changed the 
most 

How many steps of asynchronous value-iteration to 

perform?  
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Discussion 

Which states to update? 

• At least s in which the action was generated 

• Then either select states randomly, or  

• States that are likely to get their Q-values changed because 
they can reach states with Q-values that have changed the 
most 

How many steps of asynchronous value-iteration to 

perform?  

• As many as can be done before having to act again 
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Q-learning vs. Model-based 

 Is it better to learn a model and a utility function or an action 

value function with no model? 

• Still an open-question 

 Model-based approaches require less data to learn well, but they 

can be computationally more expensive (time per iteration) 

 Q-learning takes longer because it does not enforce consistency 

among Q-values via the model 

• Especially true when the environment becomes more complex 

• In games such as chess and backgammon, model-based approaches have 
been more successful that q-learning methods 

  Cost/ease of acting needs to be factored in 
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