Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 10

Sep, 30,2015

CPSC422,Lecture 10 Slide 1

Lecture Overview

Finish Reinforcement learning

» Exploration vs. Exploitation
* On-policy Learning (SARSA)

CPSC422,Lecture 10

=) | | |
| § } Sarg'
|
o Q(s,a):\ﬁrmax Q(S {95 l
L] — A
Q(SIQ\B S QCS,QD
ML (7‘ J - .
WXQG)
(}A - A t (vt - /\t—l)

Q(S& (s AW\ ((\rfzgwaxﬁe(sa Q(s &\>

CPSC422. Lecture 10 Slide 3

Clarification on the a,._ - L

s /_&\ N s

What Does Q-Learning learn

» Q-learning does not explicitly tell the agent what to do....

» Given the Q-function the agent can......
.... either exploit it or explore more....

Any effective strategy should
Choosethe predicted best action in the limit
Try each action an unbounded number of times
 We will look at two exploration strategies
e-greedy

soft-max

Soft-Max

» When in state s, Takes into account improvement in estimates
of expected reward function QJs,a] for all the actions

« Choose action a in state s with a probability proportional to current
estimate of Q[s,a]

eQ[s,a] eQ[s,a]/r
ZeQ[s,a] ZeQ[s,a]/r
a a

» 1 (tau) In the formula above influences how randomly values
should be chosen

+ iftis high, >>Q[s,a]?

A. 1t will mainly exploit

@ mainly explore

C. 1t will do both with equal probability

Soft-Max

» Takes into account improvement in estimates of expected
reward function QJs,a]

« Choose action a in state s with a probability proportional to current
estimate of Q[s,a]

eQ[s,a]/r

ZeQ[s,a]/r

a

» 1 (tau) In the formula above influences how randomly values
should be chosen

« |f Tis high, the exponentials approach 1, the fraction approaches
1/(number of actions), and each action has approximately the same
probability of being chosen (exploration or exploitation?)

« as 71— 0, the exponential with the highest Q[s,a] dominates, and the
current best action is always chosen (exploration or exploitation?)

Soft-Max

b
N\ O\ N

. 0 —
» 1 (tau) In the formula above influences how randomly values
should be chosen

« |f Tis high, the exponentials approach 1, the fraction approaches
1/(number of actions), and each action has approximately the same
probability of being chosen (exploration or exploitation?)

« asT1— 0, the exponential with the highest Q[s,a] dominates, and the
current best action is always chosen (exploration or exploitation?)

Lecture Overview

Finish Reinforcement learning

« Exploration vs. Exploitation
* On-policy Learning (SARSA)
» RL scalability

CPSC422,Lecture 10

11

Learning before vs. during deployment

» Our learning agent can:

A. act in the environment to learn how it works (before
deployment)

B. Learn as you go (after deployment)
> If there is time to learn before deployment, the agent

should try to do its best to learn as much as possible about
the environment

« even engage in locally suboptimal behaviors, because this will
guarantee reaching an optimal policy in the long run

> If learning while “at work”, suboptimal behaviors could be
costly

CPSC 422, Lecture 10 13

Example

» Consider, for instance, our sample grid - [—H]
game: S4 | Sg [l

» the optimal policyistogo up in S,

| | . [9So | Sghl

« Butif the agent includes some exploration in its
policy (e.g. selects 20% of its actions randomly),
exploring in S, could be dangerous because it [1]8g | S9 &
may cause hitting the -100 wall

* No big deal if the agent is not deployed yet, but
not ideal otherwise

» Q-learning would not detect this problem

» |tdoes off-policylearning,i.e., it focuses on the optimal policy

» On-policy learning addresses this problem

CPSC 422, Lecture 10 14

On-policy learning: SARSA

» On-policy learning learns the value of the policy being
followed.

* e.g.,act greedily 80% of the time and act randomly 20% of the time

- Better to be aware of the consequences of exploration has it
happens, and avoid outcomes that are too costly while acting,
rather than looking for the true optimal policy

» SARSA

« So called because it uses <state, action, reward, state, action>
experiences rather than the <state, action, reward, state> used by
Q-learning

 Instead of looking for the best action at every step, it evaluates the
actions suggested by the current policy

e Uses this info to revise it

CPSC 422, Lecture 10 15

On-policy learning: SARSA

» Glven an experience <s,a,,s’,a’>, SARSA updates QJs,a]
as follows

Qls.a] «-Q[s,a]+a((r +,Q[s,a’]) -Q[s,a])

What’s different from Q-learning?

CPSC 422, Lecture 10 16

On-policy learning: SARSA

» Given an experience <s,a, , S, a>, SARSA updates
Q[s,a] as follows

Qls.a] < Qls,a]+a((r +)Q[s",a’]) - Qls,a])
» While Q-learning was using

Qls, a] - Q[s,a]+a((r +ymax Q[s',a’]) -Q[s, a])

» There Is no more max operator in the equation, there is
Instead the Q-value of the action suggested by the current

policy

CPSC 422, Lecture 10 17

k=1

Qls,a] «-Q[s,a]+a(r+,Q[s",a']-Q[s,a])

Qls.al So | S1 | S S3 [S4 | Ss
upCareful 0 0 0 0 0 0
Left 0 0 0 0 0 0
Right 0 0 0 0 0 0
Up 0 0 0 0 0 0

QI[s,, right] «— Q[s,, right] + , (r +0.9Q[s,,UpCareful]-Q[s,, right]);

Q[s,, right] «

Q[s,, upCarfull] «— Q[s,,upCarfull]+ ¢, (r +0.9Q[s;,UpCareful] - Q[s,, upCarfull]);

Q[s,,upCarfull] «

Q[s,, upCarfull] «— Q[s,,upCarfull]+, (r + 0.9Q[s;, Left] - Q[s,, upCarfull]);

Q[s;,upCarfull] «-0+1(-1+0.9*0-0)=-1

Q[s;, Left] «— Q[s;, Left]+ , (r +0.9Q[s,, left] - Q[s;, Left]);
Q[s;, Left] «- 0+1(0+0.9*0-0)=0

R
(so.right,0.s1.upCareful. — 1,53, upCareful, —1.s5. left, 0,54, left,]U"yﬂ)njH}Jr L 54A 55 F1]

¥

(00 So 5? L]
7] S -’51 1]

Only immediate rewards

Q[s,, Left] < Q[s,, Left]+ , (r +0.9Q[s,, Right]-Q[s,, Left]);

Q[s,, Left] «<— 0+1(10+0.9%*0—0) =10

20
CPSC 422, Lecture 10

are included in the update,
as with Q-learning

1]
(so.right 0.5y . upCareful. — 1. 53, upCareful. —1.55. left. 0.54. left. 10.50,¢| H;H lé’ 54¢ 55 5
Qls, a] < Qls, al+ a(r +Qls’,a']-Qls,) i
100 S Sq L
Q[s.a] So | St | S S3 | S4 | Ss 10 2 f
=7 upCareful 0O]-1]10|-1]0}|0
Left 00| 0] 0 |10] 0 1] Sg -’51]
Right 0 0 0 0 0 0
Up 0 0 0 0 0 0
QI[s,, right] «— Q[s,, right] + , (r +0.9Q[s,,UpCareful]-Q[s,, right]); SARSAbacks up the
right] expected reward of the next
QLS. right] < action, rather than the max
expected reward

Qls,, upCarfull] «— Q[s,, upCarfull] + e, (r + 0.9Q[s,;, UpCareful] - Q[s,, upCarfull]);
Q[s,, upCarfull] «-

Q[s,, upCarfull] «— Q[s,,upCarfull]+, (r + 0.9Q[s;, Left] - Q[s,, upCarfull]);
Q[s;,upCarfull] «—-1+1/2(-1+0.9*0+1) =-1

Q[s;, Left] «— Q[s;, Left]+ , (r +0.9Q[s,, left] - Q[s;, Left]);
Q[s;, Left] «— 0+1/2(0+0.9*10-0) =4.5

Q[s,, Left] < Q[s,, Left]+ , (r +0.9Q[s,, Right]-Q[s,, Left]);

Qls,, Left] <~ 10+1/2(10+0.9*0~10) =10 CPSC 422 Lecture 10 21

Comparing SARSA and Q-learning

> For the little 6-states world

» Policy learned by Q-learning 80% greedy isto go up in s,
to reach s, quickly and get the big +10 reward

Iterations Ql[So,Up] Qls:,Up] Qls,,UpC] Qlss,Up] Qlss Left] Qlss,Left]
40000000 19.1 17.5 22.7 20.4 26.8 23.7
(1] 1]

E(I)] Sq | Sg L

o0 So | Sq b

i
1]Sg | Sq L

« \erify running full demo, see 22
http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html CPSC 422, Lecture 10

Comparing SARSA and Q-learning

» Policy learned by SARSA 80% greedy is to go right in s,

» Safer because avoid the chance of getting the -100 reward in s,

» but non-optimal => lower g-values

Iterations Q[sy,Right] Q[s1,Up] Q[s,,UpC] Q[s3,Up] Q[s4,Left] Q[ss, Left]
40000000 6.8 8.1 12.3 10.4 15.6 13.2
] 1]
E(Iﬂ Sy | S50
00 So | Sg b

Verify running full demo, see

http://www.cs.ubc.ca/~poole/aibook/demos/rl/tGame.html

1] SO a=S1 F1]

CPSC 422, Lecture 10

23

SARSA Algorithm

This could be, for instance any e-

hegl.n. o o greedy strategy:
initialize Q[S, A] arbitrarily -Choose random ¢ times, and max
observe current state s the rest

end

select action a using a policy based on @
repeat forever:
carry out an action a
observe reward r and state s’
select action a’ using a policy based on @
QRls.a] — Qls.a]l + a(r +Q[s".a] — Q[s.a])
s+« s’
a—a:

end-repeat

CPSC 422, Lecture 10

If the random step is chosen
here, and has a bad negative
reward, this will affect the
value of Q[s,a].

Next time in's, a may no
longer be the action selected
because of its lowered Q
value

24

Another Example
» Gridworld with:

« Deterministic actions up, down, left, right
« Startfrom S and arrive at G (terminal state with reward > 0)

« Rewardis -1 for all transitions, except those into the region marked “Cliff

v Falling into the cliff causes the agent to be sent back to start: I = -100

a = 2 B&
R~ =

~190
25

CPSC 422 | ecture 10

» With an e-greedy strategy (e.g., € =0.1)

A. SARSA will learn policy@)while Q-learning will Iearn

@-Iearning will learn policy@ while SARSA will Iear

C. They will both |earr@

D. They will both lear(p2)

&~

S>>l =222 | W

S| G |
R~

~190

26

CPSC 422 | ecture 10

Cliff Example

—,

o

EA 4

The Clitt

é

gv/

» Because of negative reward for every step taken, the
optimal policy over the four standard actions is to take the

shortest path along the cliff

safe path

gptimal path

» But if the agents adopt an €-greedy action selection
strategy with €=0.1, walking along the cliff is dangerous

« The optimal path that considers exploration is to go around as far as

possible from the cliff

CPSC 422, Lecture 10

27

Q-learning vs. SARSA

0 e 2 AR W@ S
Episodes

» Q-learning learns the optimal policy, but because it does so without
taking exploration into account, it does not do so well while the agent is
exploring

It occasionally falls into the cliff, so its reward per episode is not that great

» SARSA has better on-line performance (reward per episode), because
It learns to stay away from the cliff while exploring

« But note that if e>0, SARSA and Q-learning would asymptotically converge
to the optimal policy
CPSC 422, Lecture 10 28

422 big picture: Where are we? Hybrid: Det+Sto

Prob CFG
Prob Relational Models
Deterministic Stochastic Markov Logics
Belief Nets
Logics Approx. : Gibbs
FirstOrderLogics || parkov Chains and HMMs
Ontologies Forward, Viterbi....
Query | Temporal rep. Approx. : Particle Filtering
« Full Resolution Undirected Graphical Models
. SAT Conditional Random Fields

Markov Decision Processes and

Planning Partially Observable MDP

 Value lteration

« Approx. Inference
Reinforcement Learning

Applications of A/

CPSC 322, Lecture 34

Representation

Reasoning
Technique

Slide 30

Learning Goals for today’s class

>»YOoUu can:

« Describe and compare technigues to combine exploration
with exploitation

« On-policy Learning (SARSA)

CPSC 422, Lecture 10 Slide 31

TODO for Fri

 Read textbook 6.4.2

 Next research paper will be next Wed

* Practice Ex 11.B

CPSC 422, Lecture 10 Slide 32

Problem with Model-free methods

» Q-learning and SARSA are model-free methods

What does this mean?

CPSC 422, Lecture 10

33

Problems With Model-free Methods

» Q-learning and SARSA are model-free methods

« They do notneed to learn the transition and/or reward model, they are
implicitly taken into account via experiences

» Sounds handy, but there is a main disadvantage:

« How often does the agent get to update its Q-estimates?

CPSC 422, Lecture 10 34

Problems with Model-free Methods

» Q-learning and SARSA are model-free methods

« They do notneed to learn the transition and/or reward model, they are
implicitly taken into account via experiences

» Sounds handy, but there is a main disadvantage:
« How often does the agent get to update its Q-estimates?
 Only after a new experience comes in

« Great If the agent acts very frequently, not so great if actions are sparse,
because it wastes computation time

CPSC 422, Lecture 10 35

Model-based methods
> ldea

« learnthe MDP and interleave acting and planning.

» After each experience,
 update probabilitiesand the reward,

« dosome steps of value iteration (asynchronous) to get better estimates of
state utilities U(s) given the current model and reward function

« Remember that there is the following link between Q values and utility
values

U(s)=maxQ(as) (1)

Q(s,a) = R(S)+7/Z P(s's,a)U(s’) (2)

Q(s,a) = R(s)+yD>_P(s'|s.a) max Q(s',a')

Sl
CPSC 422, Lecture 10 36

V1 algorithm

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states .S, actions A(s), transition model P(s’| s, a),
rewards R(s), discount v
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in .S, initially zero
d, the maximum change in the utility of any state in an iteration

repeat
U—U'":60
for each state s in S do

U'[s] — R(s) + v max P(s

agA(s) &
if |U’[s] — Uls]| > dthend—|U'[s] — Uld]|
until 6 < €(1 —75)/~
return U

s,a) Uls']

CPSC 422, Lecture 10 37

Asynchronous Value lteration

» The “basic” version of value iteration applies the Bellman update to
all states at every iteration
» This Is In fact not necessary
« On each iteration we can apply the update only to a chosen subset of states

« Given certain conditionson the value function used to initialize the process,
asynchronous value iteration converges to an optimal policy

» Main advantage

« one candesign heuristics that allowthe algorithm to concentrate on states
thatare likely to belongto the optimal policy

« Much faster convergence

CPSC 422, Lecture 10 38

Asynchronous VI algorithm

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states 3, transition model T', reward function R, discount 7y

¢, the maximum error allowed in the utility of any state
local variables: U, U7, vectors of utilities for states in S, initially zero
8, the maximum change in the utility of any state in an iteration

repeat
Ue U 6«0
for some state s in S do
U'ls]« R[s] + 7 max Y _ T(s,a,s) U[s'

i |U"s] — Uls]| > 6thend|U'[s] — Ulsl]
until § < (1 —7v)/v
return U

CPSC 422, Lecture 10 39

Model-based RL algorithm

Model Based Reinfortcement Learner

Inputs:

S isa set of states, A isa set of actions, y the discount, c isa priorcount
Internal state:

real array O/S,4/, R[S, A, S’]

Integer array 7/S,4, S’]

previous state s

previous action a

CPSC 422, Lecture 10

40

initialize O[5, A] arbitrarily

initialize R[S, A, 5] arbitrarily

initialize T[S, A, 5] to zero

observe current state s

select and carry out action a

repeal forever:
observe reward r and state s’
select and carry out action a
T[s,a,s] « T[s,a,s]+1

r — Rl[s,a,s']

Rls,a,s'] + R[s,a,5] + T[s, a,s']

54— 5
repeal
select state sq, action ay

Asynchronous value

Counts of events when action
a performed in s generated s’

TD-based estimate of R(s,a,s’)

iteration steps

\ What is this c for?

let P = Z_[T[Sp ay,52) +)
52

T|s1,a1, 82| + ¢
(51, a1] + E [s1,21, 5] (R[51_,n1_,53] —I—frm{.}x Q[F:,.‘T:])

until an observation arrives

Frequency of transition
from s, WPSCYR dqectur

S

Why is the reward
inside the summation?

41

Discussion

» Which Q values should asynchronous VI update?
At least s in which the action was generated

» Then either select states randomly, or

» States that are likely to get their Q-values changed because

they can reach states with Q-values that have changed the
most

» How many steps of asynchronous value-iteration to
perform?

CPSC 422, Lecture 10 42

Discussion
» Which states to update?

« At least s in which the action was generated

* Then either select states randomly, or

o States that are likely to get their Q-values changed because

they can reach states with Q-values that have changed the
most

» How many steps of asynchronous value-iteration to
perform?

« As many as can be done before having to act again

CPSC 422, Lecture 10 43

Q-learning vs. Model-based

> |s it better to learn a model and a utility function or an action
value function with no model?

« Still an open-question

» Model-based approaches require less data to learn well, but they
can be computationally more expensive (time per iteration)

» Q-learning takes longer because it does not enforce consistency
among Q-values via the model

» Especiallytrue when the environment becomes more complex

 In games such as chess and backgammon, model-based approaches have
been more successful that g-learning methods

» Cost/ease of acting needs to be factored in

CPSC 422, Lecture 10 44

