Marginal Independence and Conditional Independence

Computer Science cpsc322, Lecture 26

(Textbook Chpt 6.1-2)

June 13, 2017

Lecture Overview

- Recap with Example
 - Marginalization
 - Conditional Probability
 - Chain Rule
- Bayes' Rule
- Marginal Independence
- Conditional Independence

our most basic and robust form of knowledge about uncertain environments.

Recap Joint Distribution

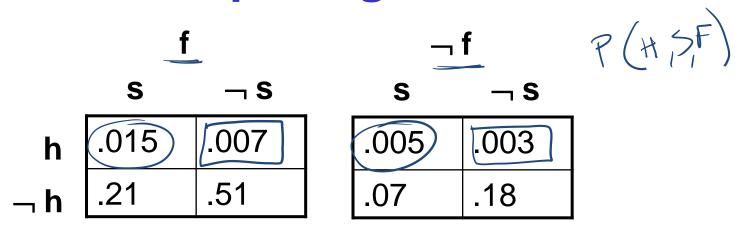
- •3 binary random variables: P(H,S,F)
 - H dom(H)={h, ¬h} has heart disease, does not have...
 - S $dom(S)=\{s, \neg s\}$ smokes, does not smoke
 - F $dom(F)=\{f, \neg f\}$ high fat diet, low fat diet

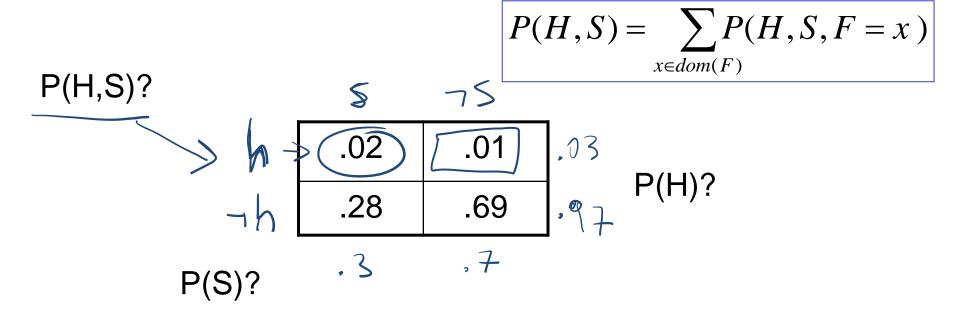
Recap Joint Distribution Joint Prob. Distribution (JPD)

- •3 binary random variables: P(H,S,F)
 - H dom(H)={h, ¬h} has heart disease, does not have...
 - S $dom(S)=\{s, \neg s\}$ smokes, does not smoke
 - F $dom(F)=\{f, \neg f\}$ high fat diet, low fat diet

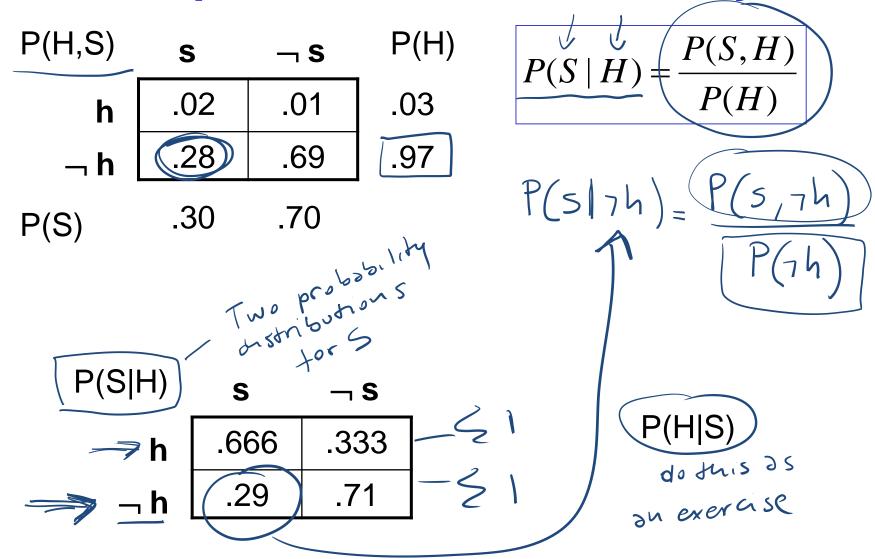
	f			_		
	S	¬ s		S	¬ s	
<i>→</i> h	.015	.007		.005	.003	1 \le 1
<i>⇒</i> ¬ h	.21	.51		.07	.18	
2'3-	1		S	K_I		

Recap Marginalization





Recap Conditional Probability



Recap Conditional Probability (cont.)

$$P(S|H) = \frac{P(S,H)}{P(H)}$$

$$P(S|H,F)$$

$$P(S|H,F)$$

Two key points we covered in the previous lecture

- We derived this equality from a possible world semantics of probability
- It is not a probability distributions but. Set of probability distributions but.
- One for each configuration of the conditioning var(s)

Recap Chain Rule

$$P(H,S,F) = P(H) * P(S|H) * P(F|H,S)$$

$$P(H) * P(S|H) * P(F,H,S)$$

$$P(H) * P(S|H) * P(F,H,S)$$

$$P(H) * P(H,S)$$

$$P(H,S)$$

$$P(S \mid H) = \frac{P(S, H)}{P(H)}$$

$$P(H \mid S) = \frac{P(S, H)}{P(S)}$$

$$P(S \mid H) = \frac{P(H \mid S)P(S)}{P(H)}$$

$$P(H \mid S) = \frac{P(S, H)}{P(S)}$$

Lecture Overview

- Recap with Example and Bayes Theorem
- Marginal Independence
- Conditional Independence

Do you always need to revise your beliefs?

when your knowledge of **Y**'s value doesn't affect your belief in the value of **X**

DEF. Random variable **X** is marginal independent of random variable **Y** if, for all $x_i \in \text{dom}(X)$, $y_k \in \text{dom}(Y)$, $P(X = x_i \mid Y = y_k) = P(X = x_i)$

Marginal Independence: Example

• X and Y are independent iff: P(x) = P(x|Y) = P(x|Y)

$$P(X|Y) = P(X) \text{ or } P(Y|X) = P(Y) \text{ or } P(X, Y) = P(X) P(Y)$$

- That is new evidence Y(or X) does not affect current belief
 in X (or X)
- in X (or Y)

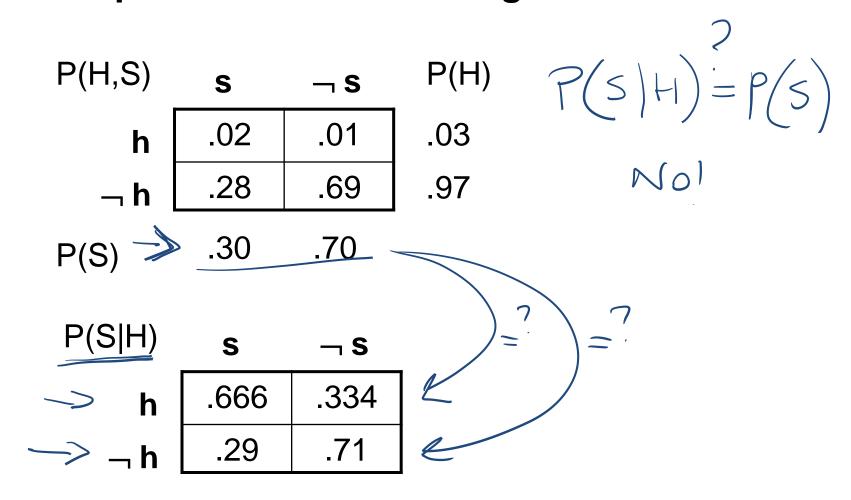
 Ex: P(Toothache, Catch, Cavity), Weather)

 = P(Toothache, Catch, Cavity) P(westher)
- JPD requiring 32 entries is reduced to two smaller ones (8 and 4)

Joint prob distribution

In our example are Smoking and Heart Disease marginally Independent?

What our probabilities are telling us....?



Lecture Overview

- Recap with Example
- Marginal Independence
- Conditional Independence

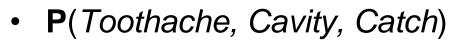
Conditional Independence

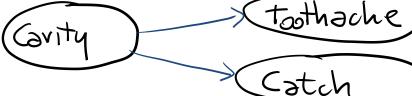
• With marg. Independence, for n independent random vars, $O(2^n) \rightarrow O(\omega)$

$$P(x_1, \dots, x_n) = P(x_1) \times \dots \times P(x_n)$$

- Dentistry is a large field with hundreds of variables, few of which are independent (e.g., Cavity, Heart-disease).
- · What to do?

Look for weaker form of independence





Are Toothache and Catch marginally independent?

- BUT If have a cavity, does the probability that the probe catches depend on whether I have a toothache?

 (1) P(catch | toothache, cavity) = P(cotch | cavity)
- What if I haven't got a cavity?

(2)
$$P(catch \mid toothache, \neg cavity) = P(cstch \mid \neg covity)$$

Each is directly caused by the cavity, but neither has a direct effect on the other

Conditional independence

- In general, Catch is conditionally independent of Toothache given Cavity.
- 1) P(Catch | Toothache, Cavity) = P(Catch | Cavity)
 - Equivalent statements:
- P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
- P(Toothache, Catch | Cavity) =
 P(Toothache | Cavity) P(Catch | Cavity)

$$P(X,Y)^2 = P(X)^2 P(Y)^2$$

Proof of equivalent statements

$$P(x|Yz) = P(x|z) = P(x|z) = P(x,z) =$$

3)
$$P(x,y|z) = P(x,y|z) + P(x,z) = P(x,z)$$

 $P(z)$ $P(z)$ $P(z)$
 $P(x,z) = P(x|z)$
 $P(x,z) = P(x|z)$

Conditional Independence: Formal Def.

Sometimes, two variables might not be marginally independent. However, they *become* independent after we observe some third variable

DEF. Random variable **X** is conditionally independent of random variable **Y** given random variable **Z** if, for all $x_i \in \text{dom}(X)$, $y_k \in \text{dom}(Y)$, $z_m \in \text{dom}(Z)$

$$P(X = x_i | Y = y_k, Z = z_m) = P(X = x_i | Z = z_m)$$

That is, knowledge of **Y**'s value doesn't affect your belief in the value of **X**, given a value of **Z**

Conditional independence: Use

Write out full joint distribution using chain rule:

```
P(Cavity, Catch, Toothache)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

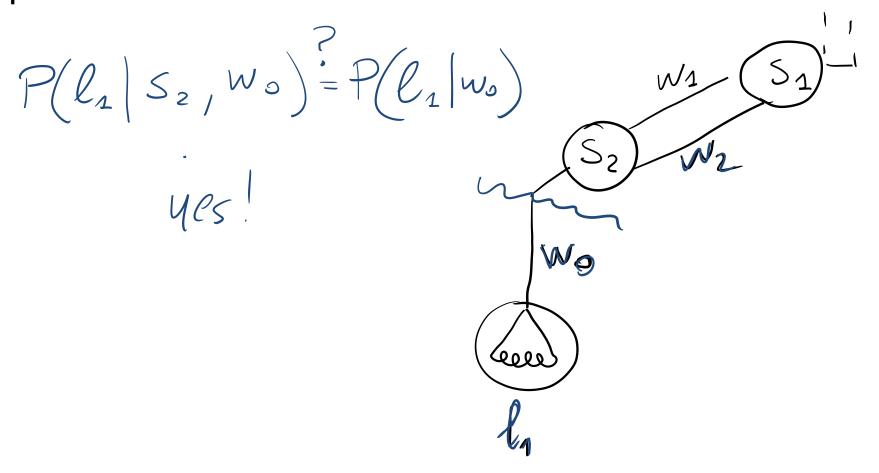
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

how many probabilities? 2^3 - 1 = 7
```

- The use of conditional independence often <u>reduces the size of</u> the representation of the joint distribution from exponential in n to linear in n. What is n? ★ ↓ vxrs
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

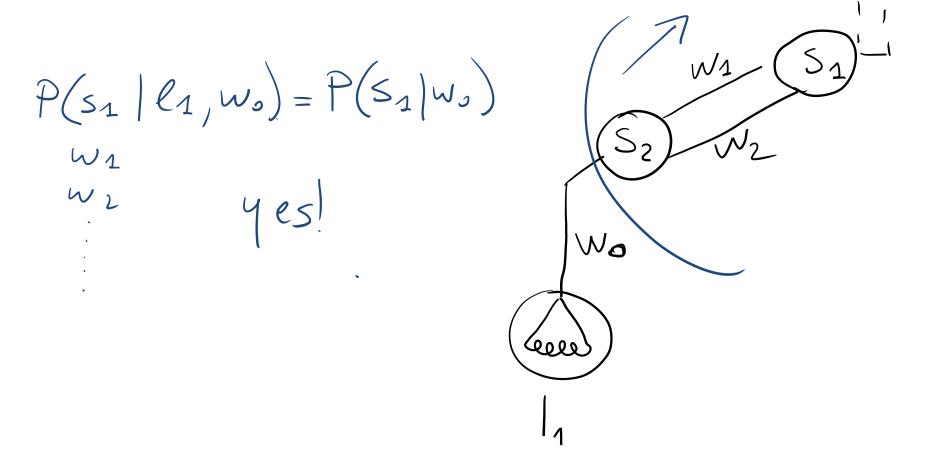
Conditional Independence Example 2

• Given whether there is/isn't power in wire w0, is whether light 11 is lit or not, independent of the position of switch s2?



Conditional Independence Example 3

• Is every other variable in the system independent of whether light I1 is lit, given whether there is power in wire w0?



Learning Goals for today's class

- You can:
- Derive the Bayes Rule

Define and use Marginal Independence

Define and use Conditional Independence

Where are we? (Summary)

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every possible world
- Queries can be answered by summing over possible worlds
- For nontrivial domains, we must find a way to reduce the joint distribution size
- Independence (rare) and conditional independence (frequent) provide the tools

Next Class

Bayesian Networks (Chpt 6.3)

Start working on assignments3!