Stochastic Local Search

Computer Science cpsc322, Lecture 15

(Textbook Chpt 4.8)

May, 30, 2017
Lecture Overview

- Recap Local Search in CSPs
- Stochastic Local Search (SLS)
- Comparing SLS algorithms
Local Search: Summary

- A useful method in practice for large CSPs
 - Start from a possible world (randomly chosen)

- Generate some neighbors ("similar" possible worlds)
 - e.g. differ from current poss. world only by one variable's value

- Move from current node to a neighbor, selected to minimize/maximize a scoring function which combines:
 - ✓ Info about how many constraints are violated/satisfied
 - ✓ Information about the cost/quality of the solution (you want the best solution, not just a solution)
$$X_1 = \{0, \ldots, k_1\} \quad X_2 = \{0, \ldots, k_2\}$$
Hill Climbing

NOTE: Everything that will be said for Hill Climbing is also true for Greedy Descent

current: $x_1 = a$
$x_2 = b$

4 neighbors
$x_1 = a \pm 1$
$x_2 = b \pm 1$

two vars
$x_1 \times x_2$
assume domain
integer [0, 1, 2, ...]
Problems with Hill Climbing

Local Maxima.

Plateau – Shoulders
In higher dimensions……….

E.g., Ridges – sequence of local maxima not directly connected to each other.
From each local maximum you can only go downhill.
Corresponding problem for GreedyDescent
Local minimum example: 8-queens problem

A local minimum with $h = 1$

for all the moves (neighbors) $h > 1$

$h = 0$ for solution
Lecture Overview

- Recap Local Search in CSPs
- Stochastic Local Search (SLS)
- Comparing SLS algorithms
Stochastic Local Search

GOAL: We want our local search

• to be guided by the scoring function
• Not to get stuck in local maxima/minima, plateaus etc.

SOLUTION: We can alternate

a) Hill-climbing steps
b) Random steps: move to a random neighbor.
c) Random restart: reassign random values to all variables.
Which randomized method would work best in each of these two search spaces?

A. Greedy descent with random steps best on X
 Greedy descent with random restart best on Y

B. Greedy descent with random steps best on Y
 Greedy descent with random restart best on X

C. The two methods are equivalent on X and Y
Which randomized method would work best in each of the these two search spaces?

Greedy descent with random steps best on B
Greedy descent with random restart best on A

- But these examples are simplified extreme cases for illustration
 - in practice, you don’t know what your search space looks like

- Usually integrating both kinds of randomization works best
Random Steps (Walk)

Let’s assume that neighbors are generated as

- assignments that differ in one variable’s value

How many neighbors there are given n variables with domains with d values?

One strategy to add randomness to the selection of the variable-value pair. Sometimes choose the pair

- According to the scoring function
- A random one

E.G in 8-queen

- How many neighbors?
- Choose one of the circled ones
 - 1 choose one of the circled ones
 - 2 choose randomly one of the 56
Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

- Sometimes select variable:
 1. that participates in the largest number of conflicts. \(V_5 \)
 2. at random, any variable that participates in some conflict.
 3. at random \(V_6 \) \((V_4, V_5, V_8)\)

- Sometimes choose value
 a) That minimizes # of conflicts
 b) at random

Aispace

2 a: Greedy Descent with Min-Conflict Heuristic
Successful application of SLS

• Scheduling of Hubble Space Telescope: reducing time to schedule 3 weeks of observations: from one week to around 10 sec.
Example: SLS for RNA secondary structure design

RNA strand made up of four bases: cytosine (C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into is important for its **function**

Predicting structure for a strand is “easy”: $O(n^3)$

But what if we want a strand that folds into a certain structure?

- Local search over strands
 - Search for one that folds into the right structure
- Evaluation function for a strand
 - Run $O(n^3)$ prediction algorithm
 - Evaluate how different the result is from our target structure
 - Only defined implicitly, but can be evaluated by running the prediction algorithm

Best algorithm to date: Local search algorithm RNA-SSD **developed at UBC** [Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]
CSP/logic: formal verification

Hardware verification Software verification
(e.g., IBM) (small to medium programs)

Most progress in the last 10 years based on:
Encodings into propositional satisfiability (SAT)
(Stochastic) Local search advantage:
Online setting

- When the problem can change (particularly important in scheduling)
- E.g., schedule for airline: thousands of flights and thousands of personnel assignment
 - Storm can render the schedule infeasible
- Goal: Repair with minimum number of changes
- This can be easily done with a local search starting from the current schedule
- Other techniques usually:
 - require more time
 - might find solution requiring many more changes
SLS limitations

• Typically no guarantee to find a solution even if one exists
 • SLS algorithms can sometimes stagnate
 ✓ Get caught in one region of the search space and never terminate
 • Very hard to analyze theoretically

• Not able to show that no solution exists
 • SLS simply won’t terminate
 • You don’t know whether the problem is infeasible or the algorithm has stagnated
SLS Advantage: anytime algorithms

- When should the algorithm be stopped?
 - When a solution is found (e.g. no constraint violations)
 - Or when we are out of time: you have to act NOW
- Anytime algorithm:
 - maintain the node with best h found so far (the “incumbent”)
 - given more time, can improve its incumbent
Lecture Overview

- Recap Local Search in CSPs
- Stochastic Local Search (SLS)
- Comparing SLS algorithms
Evaluating SLS algorithms

- SLS algorithms are randomized
 - The time taken until they solve a problem is a random variable
 - It is entirely normal to have runtime variations of 2 orders of magnitude in repeated runs!
 - E.g. 0.1 seconds in one run, 10 seconds in the next one
 - On the same problem instance (only difference: random seed)
 - Sometimes SLS algorithm doesn’t even terminate at all: stagnation

- If an SLS algorithm sometimes stagnates, what is its mean runtime (across many runs)?
 - Infinity!
 - In practice, one often counts timeouts as some fixed large value X
 - Still, summary statistics, such as mean run time or median run time, don’t tell the whole story
 - E.g. would penalize an algorithm that often finds a solution quickly but sometime stagnates
First attempt...

- How can you compare three algorithms when
 A. one solves the problem 30% of the time very quickly but doesn’t halt for the other 70% of the cases
 B. one solves 60% of the cases reasonably quickly but doesn’t solve the rest
 C. one solves the problem in 100% of the cases, but slowly?

![Diagram showing % of solved runs vs. mean runtime/steps of solved runs with labels A and B]
Runtime Distributions are even more effective

Plots runtime (or number of steps) and the proportion (or number) of the runs that are solved within that runtime.

- log scale on the x axis is commonly used

Fraction of solved runs, i.e. $P(\text{solved by this # of steps/time})$
Comparing runtime distributions

x axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime

• Typically use a log scale on the x axis

Fraction of solved runs, i.e.
P(solved by this # of steps/time)

Which algorithm is most likely to solve the problem within 7 steps?

A. blue
B. red
C. green
Comparing runtime distributions

- Which algorithm has the best median performance?
 - I.e., which algorithm takes the fewest number of steps to be successful in 50% of the cases?

A. blue B. red C. green
Comparing runtime distributions

- x axis: runtime (or number of steps)
- y axis: proportion (or number) of runs solved in that runtime
 - Typically use a log scale on the x axis

Fraction of solved runs, i.e. \(P(\text{solved by this \# of steps/time}) \)

- 28% solved after 10 steps, then stagnate
- 57% solved after 80 steps, then stagnate
- Slow, but does not stagnate

Crossover point:
if we run longer than 80 steps, green is the best algorithm
if we run less than 10 steps, red is the best algorithm
Runtime distributions in AIspace

- Let’s look at some algorithms and their runtime distributions:
 1. Greedy Descent
 2. Random Sampling
 3. Random Walk
 4. Greedy Descent with random walk

- Simple scheduling problem 2 in AIspace:
What are we going to look at in AI space

When selecting a variable first followed by a value:

- Sometimes select variable:
 1. that participates in the largest number of conflicts.
 2. at random, any variable that participates in some conflict.
 3. at random

- Sometimes choose value
 a) That minimizes # of conflicts
 b) at random

AIspace terminology

Random sampling

Random walk

Greedy Descent

Greedy Descent Min conflict

Greedy Descent with random walk

Greedy Descent with random restart

.....
Stochastic Local Search

- **Key Idea:** combine greedily improving moves with randomization

- As well as improving steps we can allow a “small probability” of:
 - **Random steps:** move to a random neighbor.
 - **Random restart:** reassign random values to all variables.

- Always keep **best solution found so far**

- Stop when
 - Solution is found (in vanilla CSP …
 - Run out of time (return **best solution so far**)
Learning Goals for today’s class

You can:

- Implement SLS with
 - random steps (1-step, 2-step versions)
 - random restart
- Compare SLS algorithms with runtime distributions
Assign-2

- Will be out today – due June

Next Class

- Finish CSPs: More SLS variants Chp 4.9
- Planning: Representations and Forward Search Chp 8.1 - 8.2
- Planning: Heuristics and CSP Planning Chp 8.4