Local Search

Computer Science cpsc322, Lecture 14

(Textbook Chpt 4.8)

May, 30, 2017
Announcements

- Assignment1 due now!
- Assignment2 out today
Lecture Overview

- Recap solving CSP systematically
- Local search
- Constrained Optimization
- Greedy Descent / Hill Climbing: Problems
Systematically solving CSPs: Summary

- Build Constraint Network
- Apply Arc Consistency
 - One domain is empty \rightarrow no sol
 - Each domain has a single value \rightarrow unique sol
 - Some domains have more than one value \rightarrow may or may not have a solution
- Apply Depth-First Search with Pruning
- Search by Domain Splitting
 - Split the problem in a number of disjoint cases
 - Apply Arc Consistency to each case
Lecture Overview

- Recap
- Local search
- Constrained Optimization
- Greedy Descent / Hill Climbing: Problems
Local Search motivation: Scale

- Many CSPs (scheduling, DNA computing, more later) are simply too big for systematic approaches
- If you have 10^5 vars with $\text{dom}(\text{var}_i) = 10^4$

- Systematic Search
- Arc Consistency

 A. $10^5 \times 10^4$
 B. $10^{10} \times 10^8$
 C. $10^{10} \times 10^{12}$

- but if solutions are densely distributed\ldots\ldots.
Local Search: General Method

Remember, for CSP a solution is...

- Start from a possible world
- Generate some neighbors ("similar" possible worlds)
- Move from the current node to a neighbor, selected according to a particular strategy
 - Example: A, B, C, same domain {1, 2, 3}
Local Search: Selecting Neighbors

How do we determine the neighbors?

- Usually this is simple: some small incremental change to the variable assignment
 - assignments that differ in one variable’s value, by (for instance) a value difference of +1
 - assignments that differ in one variable’s value
 - assignments that differ in two variables’ values, etc.

- Example: A, B, C same domain \{1,2,3\}
Iterative Best Improvement

- How to determine the neighbor node to be selected?
- Iterative Best Improvement:
 - select the neighbor that optimizes some evaluation function
- Which strategy would make sense? Select neighbor with…

A. Maximal number of constraint violations
B. Similar number of constraint violations as current state
C. No constraint violations
D. Minimal number of constraint violations
Selecting the best neighbor

- Example: A, B, C same domain \{1, 2, 3\}, (A=B, A>1, C≠3)

A common component of the scoring function (heuristic) =>
select the neighbor that results in the ……

- the \textbf{min conflicts} heuristics
Example: N–Queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal (i.e. attacking each other)

- Positions a queen can attack
Example: N–queen as a local search problem

CSP: N–queen CSP
- One variable per column; domains \(\{1, \cdots, N\}\) \(\Rightarrow\) row where the queen in the \(i^{th}\) column seats;
- Constraints: no two queens in the same row, column or diagonal

Neighbour relation: value of a single column differs

Scoring function: number of attacks

How many neighbors?
A. 100
B. 90
C. 56
D. 9

\[N \times (N-1)\]

\[8 \times 7\]
Example: Greedy descent for N-Queen

For each column, assign randomly each queen to a row
(a number between 1 and N)

Repeat

• For each column & each number: Evaluate how many constraint violations changing the assignment would yield
• Choose the column and number that leads to the fewest violated constraints; change it

Until solved
Why this problem?
Lots of research in the 90’s on local search for CSP was generated by the observation that the run-time of local search on n-queens problems is independent of problem size!

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
Lecture Overview

- Recap
- Local search
- Constrained Optimization
- Greedy Descent / Hill Climbing: Problems
Constrained Optimization Problems

So far we have assumed that we just want to find a possible world that satisfies all the constraints. But sometimes solutions may have different values/costs.

• We want to find the optimal solution that
 • maximizes the value or
 • minimizes the cost
Constrained Optimization Example

- Example: A, B, C same domain \{1,2,3\} , (A=B, A>1, C≠3)
- Value = (C+A) so we want a solution that maximize that

\[
A = 1 \\
B = 1 \\
C = 1
\]

\[
A = 2 \\
B = 1 \\
C = 1
\]

\[
A = 1 \\
B = 2 \\
C = 1
\]

\[
\bar{A} = 1 \\
\bar{B} = 1 \\
\bar{C} = 2
\]

The scoring function we’d like to maximize might be:

\[
f(n) = (C + A) + \#-of-satisfied-const \quad \begin{array}{l}
\eta_1 \\
\eta_2 \\
\eta_3
\end{array}
\]

Hill Climbing means selecting the neighbor which best improves a (value-based) scoring function.

Greedy Descent means selecting the neighbor which minimizes a (cost-based) scoring function.

\[\text{cost} + \# \text{ of conflicts}\]
Lecture Overview

- Recap
- Local search
- Constrained Optimization
- Greedy Descent / Hill Climbing:
 Problems
Hill Climbing

NOTE: Everything that will be said for Hill Climbing is also true for Greedy Descent
Problems with Hill Climbing

Local Maxima.
Plateau – Shoulders
Even more Problems in higher dimensions

E.g., Ridges – sequence of local maxima not directly connected to each other
From each local maximum you can only go downhill
Corresponding problem for GreedyDescent
Local minimum example: 8-queens problem

A local minimum with $h = 1$

for all the moves (neighbors)

$\quad h > 1$

$h = 0$

for solution
Local Search: Summary

- A useful method for large CSPs
 - Start from a possible world (randomly chosen)

- Generate some neighbors ("similar" possible worlds)
 - e.g. differ from current poss. world only by one variable's value

- Move from current node to a neighbor, selected to minimize/maximize a scoring function which combines:
 - Info about how many constraints are violated
 - Information about the cost/quality of the solution (you want the best solution, not just a solution)
Learning Goals for today’s class

You can:

- Implement **local search** for a CSP.
- Implement different ways to **generate neighbors**.
- Implement **scoring functions** to solve a CSP by local search through either **greedy descent** or **hill-climbing**.
Next Class

- How to address problems with Greedy Descent / Hill Climbing?

Stochastic Local Search (SLS)