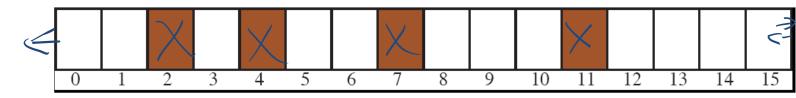
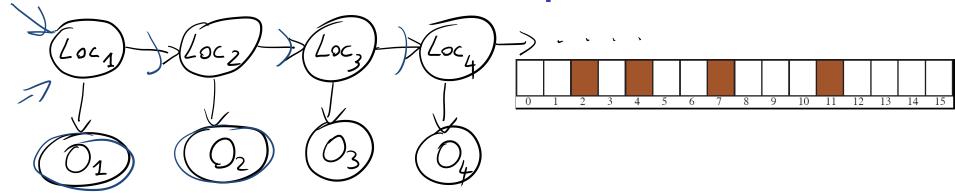
Example: Localization for "Pushed around" Robot

- Localization (where am I?) is a fundamental problem in robotics
- Suppose a robot is in a circular corridor with 16 locations



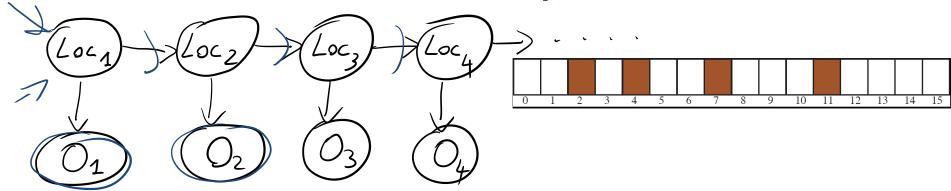
- There are four doors at positions: 2, 4, 7, 11
- · The Robot initially doesn't know where it is
- The Robot is pushed around. After a push it can stay in the same location, move left or right.
- The Robot has a Noisy sensor telling whether it is in front of a door

This scenario can be represented as...



Example Stochastic Dynamics: when pushed, it stays in the same location p=0.2, moves one step left or right with equal probability

This scenario can be represented as...

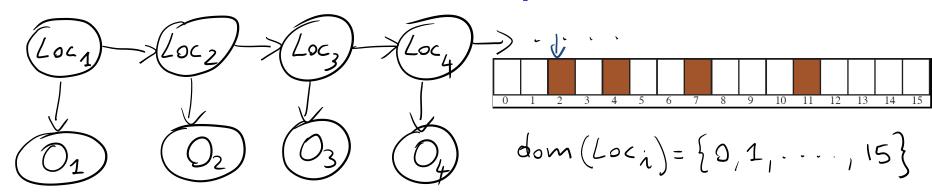


Example Stochastic Dynamics: when pushed, it stays in the same location p=0.2, moves left or right with equal probability

$$P(Loc_{t+1} | Loc_{t}) = \frac{1}{10 \cdot 10^{16}} = \frac{1$$

Slide 3

This scenario can be represented as...



Example of Noisy sensor telling whether it is in front of a door.

 $P(O_t | Loc_t)$

• If it is in front of a door
$$P(O_t = T) \neq .8$$

$$P(Ot=T) P(Ot=F)$$

If not in front of a door P(O_t = T) = 1 · ? -

CPSC 322, Lecture 32

16 prob. butions

Slide 4

Useful inference in HMMs

Localization: Robot starts at an unknown location and it is pushed around t times. It wants to determine where it is

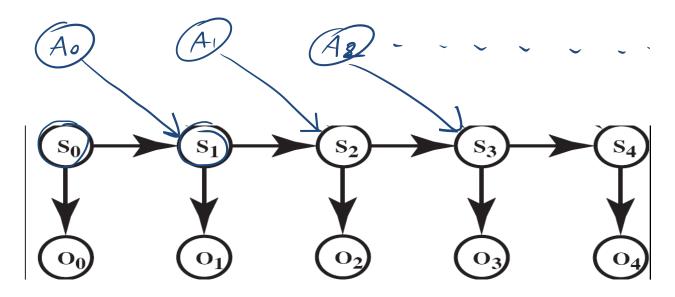
P(Loct | O1.... Ot)

In general: compute the posterior distribution over the current state given all evidence to date

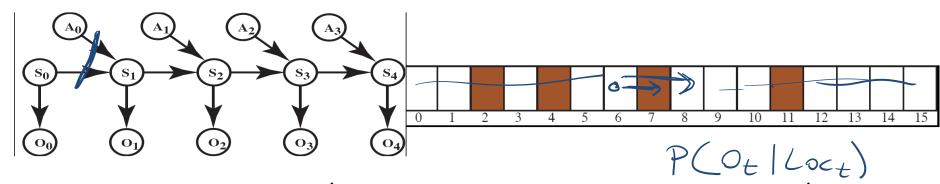
$$P(S_t \mid O_0 \cdots O_t)$$

Example: Robot Localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings
- Three actions: goRight, goLeft, Stay
- This can be represented by an augmented HMM



Robot Localization Sensor and Dynamics Model



- Sample Sensor Model (assume same as for pushed around)
- Sample Stochastic Dynamics: $P(Loc_{t+1} | Action_t, Loc_t)$

$$P(Loc_{t+1} = L) \ Action_{t} = goRight, \ Loc_{t} = L) = 0.1$$

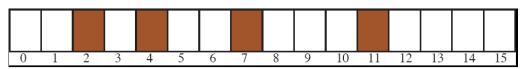
$$P(Loc_{t+1} = L+1 \ | \ Action_{t} = goRight, \ Loc_{t} = L) = 0.8$$

$$P(Loc_{t+1} = L + 2 \ | \ Action_{t} = goRight, \ Loc_{t} = L) = 0.074$$

$$P(Loc_{t+1} = L' \ | \ Action_{t} = goRight, \ Loc_{t} = L) = 0.002 \ \text{for all other locations } L'$$

- All location arithmetic is modulo 16
- The action goLeft works the same but to the left

Dynamics Model More Details



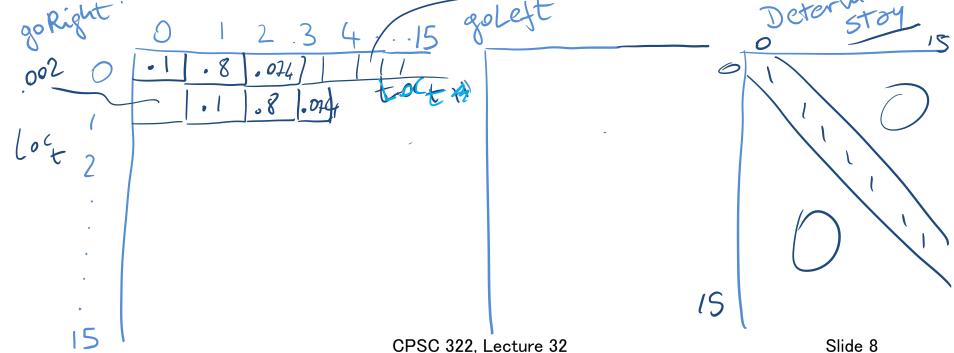
• Sample Stochastic Dynamics: $P(Loc_{t+1} | Action, Loc_t)$

$$P(Loc_{t+1} = L \mid Action_t = goRight, Loc_t = L) = 0.1$$

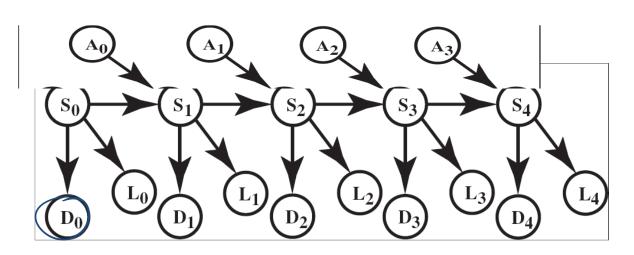
$$P(Loc_{t+1} = L+1 \mid Action_t = goRight, Loc_t = L) = 0.8$$

$$P(Loc_{t+1} = L + 2 \mid Action_t = goRight, Loc_t = L) = 0.074$$

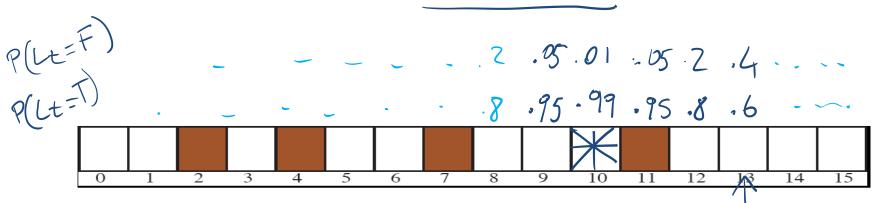
 $P(Loc_{t+1} = L' \mid Action_t = goRight, Loc_t = L) \in 0.002$ for all other locations L'



Robot Localization additional sensor



Additional Light Sensor: there is light coming through an opening at location $10 - P(L_t \mid Loc_t)$



Info from the two sensors is combined: "Sensor Fusion'

The Robot starts at an unknown location and must determine where it is

The model appears to be too ambiguous

- Sensors are too noisy
- Dynamics are too stochastic to infer anything

But inference actually works pretty well.

You can check it at:

```
http://www.cs.ubc.ca/spider/poole/demos/localization
/localization.html
```

You can use standard Bnet inference. However you typically take advantage of the fact that time moves forward (not in 322)

Sample scenario to explore in demo

- Keep making observations without moving. What happens?
- Then keep moving without making observations. What happens?
- Assume you are at a certain position alternate moves and observations

• •••

Decision Theory: Single Stage Decisions

Computer Science cpsc322, Lecture 33

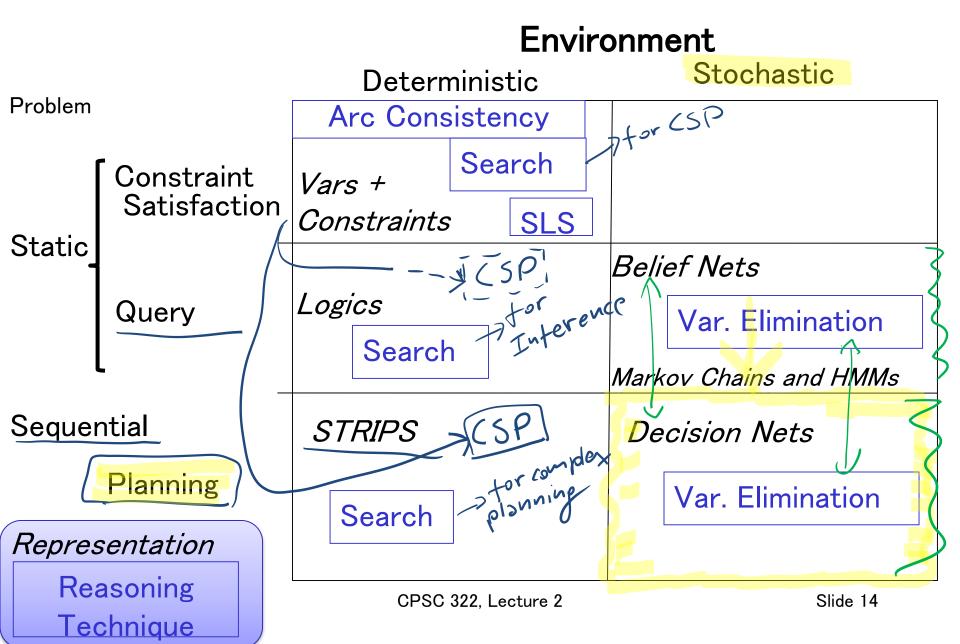
(Textbook Chpt 9.2)

June 22, 2017

Lecture Overview

- Intro
- One-Off Decision Example
- Utilities / Preferences and optimal Decision
- Single stage Decision Networks

Planning in Stochastic Environments



Planning Under Uncertainty: Intro

- Planning how to select and organize a sequence of actions/decisions to achieve a given goal.
- Deterministic Goal: A possible world in which some propositions are true

- Planning under Uncertainty: how to select and organize a sequence of actions/decisions to "maximize the probability" of "achieving a given goal"
 - Goal under Uncertainty: we'll move from all-ornothing goals to a richer notion: rating how happy the agent is in different possible worlds.

"Single" Action vs. Sequence of Actions

Set of primitive decisions that can be treated as a single macro decision to be made before acting

- Agents makes observations
- Decides on an action
- Carries out the action

Sequential

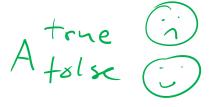
Lecture Overview

- Intro
- One-Off Decision Example
- Utilities / Preferences and Optimal Decision
- Single stage Decision Networks

One-off decision example

Delivery Robot Example

Robot needs to reach a certain room



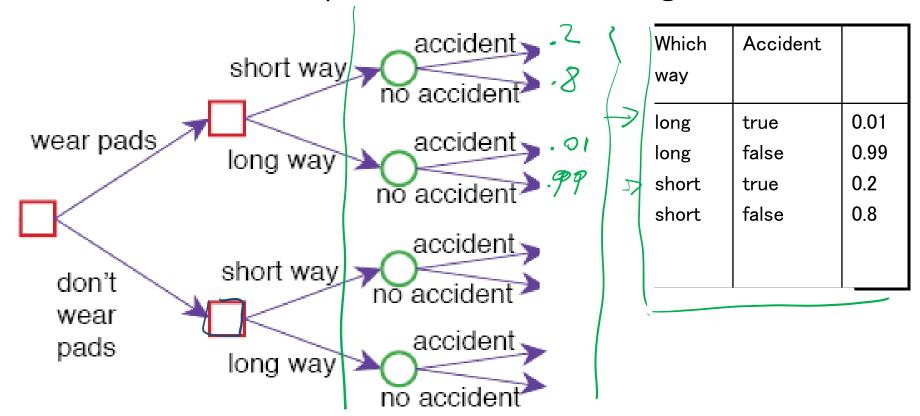
- Going through stairs may cause an accident.
- It can go the short way through long stairs, or the long way through short stairs (that reduces the chance of an accident but takes more time)

The Robot can choose to wear pads to protect itself or not (to protect itself in case of an accident) but pads slow it down

If there is an accident the Robot does not get to the room

Decision Tree for Delivery Robot

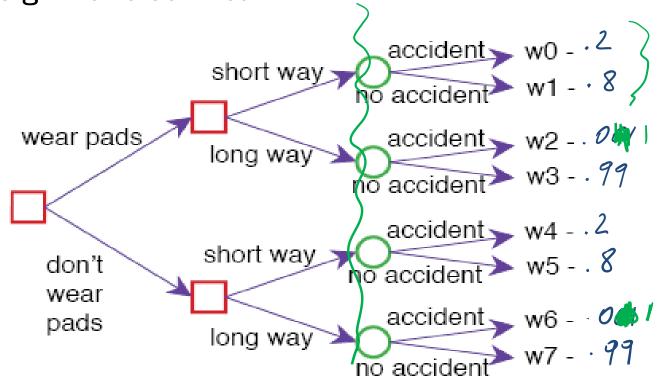
This scenario can be represented as the following decision tree



- The agent has a set of decisions to make (a macro-action it can perform)
- Decisions can influence random variables
- Decisions have probability distributions over outcomes

Decision Variables: Some general Considerations

- A possible world specifies <u>a value for each random</u> variable and each decision variable.
- For each assignment of values to all decision variables, the probabilities of the worlds satisfying that assignment sum to 1.



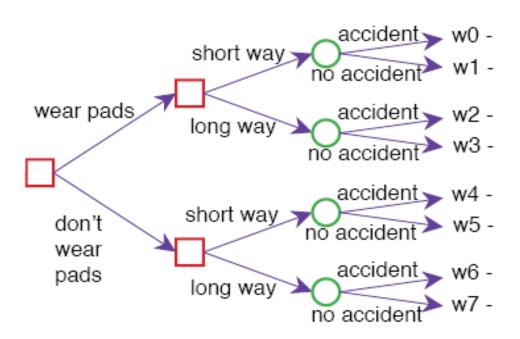
Lecture Overview

- Intro
- One-Off Decision Problems
- Utilities / Preferences and Optimal Decision
- Single stage Decision Networks

What are the optimal decisions for our Robot?

It all depends on how happy the agent is in different situations.

For sure getting to the room is better than not getting there.... but we need to consider other factors..



Utility / Preferences

Utility: a measure of desirability of possible worlds to an agent

Let U be a real-valued function such that U(w) represents an agent's degree of preference for world w.

Would this be a reasonable utility function for our Robot, who wants

to reach the room?

'	Which way	Accident	Wear Pads	Utility	World
	short	true	true	35	w0, moderate damage
. _:	short_	false	true	95	w1, reaches room, quick, extra weight
	long	true	true	30	w2, moderate damage, low energy
	long	false	true	75	w3, reaches room, slow, extra weight
:	short	true	false	3	w4, severe damage
>_	short	false	false	100	w5, reaches room, quick
	long	false 🔨	false	0	w6, reaches room, slow
	long	true 🥙	false	80	w7, severe damage, low energy

A. Yes

C . No

B. It depends

i clicker.

Utility: Simple Goals

How can the simple (boolean) goal "reach the room" be specified?

A.

Which way	Accident	Wear Pads	Utility
long	true	true	0
long	true	false	0
long	false	true	Ó
long	false	false	0
short	true	true	O
short	true	false	0
short	false	true	100
short	false	false	90

Which way	Accident	Wear Pads	Utility
long	true	true	0
long	true	false	0
long	false	true	0
long	false	false	100
short	true	true	0
short	true	false	0
short	false	true	0
short	false	false	0

B.

C

Which way	Accident	Wear Pads	Utility
long	true	true	0
long	true	false	0
long	false	true	100
long	false	false	100
short	true	true	0
short	true	false	0
short	false	true	100
short	false	false	(101)

D. Not possible

Slide 24

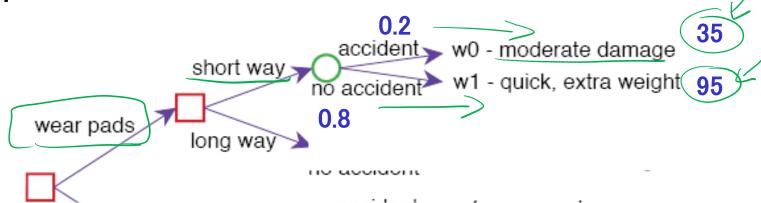
Utility: Simple Goals

Can simple (boolean) goals still be specified?

(B 0 x) .	4 rea	ching	the room	4	Accident
2081	Which way long long long short short short	Accident true true false false true true false	Wear Pads true false true false true false true false false false	Utility OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	must be talse

Optimal decisions: How to combine Utility with Probability

What is the **utility** of achieving a certain **probability distribution** over **possible worlds**?

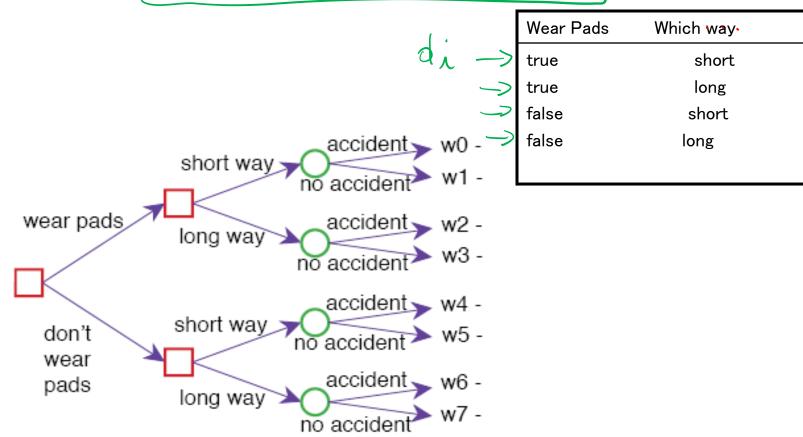


It is its <u>expected utility/value</u> i.e., its average utility, weighting possible worlds by their probability.

Optimal decision in one-off decisions

Given a set of n decision variables var_i (e.g., Wear Pads, Which Way), the agent can choose:

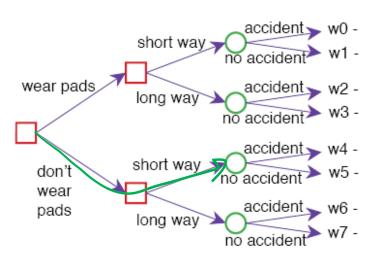
$$D = d_i \text{ for any}_i d_i \in \text{dom}(var_i) \times ... \times \text{dom}(var_n)$$
.



Optimal decision: Maximize Expected Utility

The expected utility of decision $D = d_i$ is

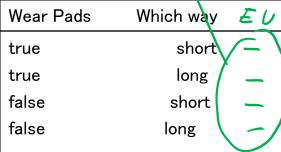
$$\mathbb{E}(U \mid D = d_i) = \sum_{w \in D = d_i} P(w \mid D = d_i) U(w)$$
e.g.,
$$\mathbb{E}(U \mid D = \{WP = \{WP = \{w \in S, WW = \{w \in S\}\}\}\}$$



• An optimal decision is the decision $D = d_{max}$ whose expected utility is maximal:

Wear Pads Which way

$$d_{\max} = rg \max_{d_i \in dom(D)} \mathbb{E}(U \mid D = d_i)$$
 true false false

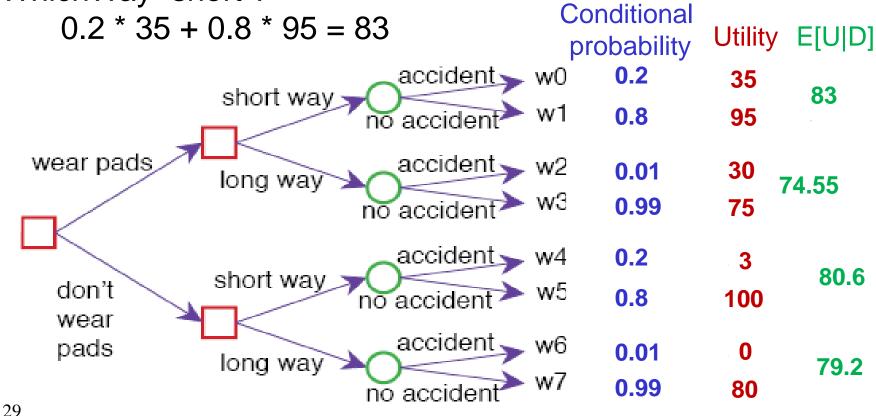


Expected utility of a decision

• The expected utility of decision $D = d_i$ is

$$\mathbb{E}(U \mid D = d_i) = \sum_{w \mid (D = d_i)} P(w) U(w)$$

 What is the expected utility of Wearpads=true, WhichWay=short?



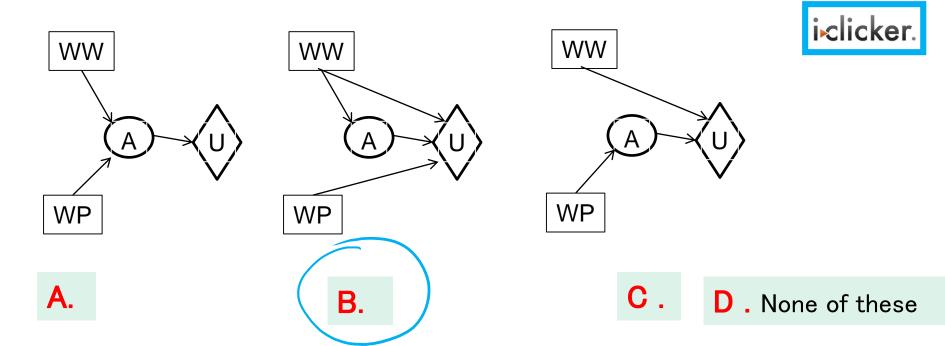
Lecture Overview

- Intro
- One-Off Decision Problems
- Utilities / Preferences and Optimal Decison
- Single stage Decision Networks

Single-stage decision networks

Extend belief networks with:

- **Decision nodes**, that the agent chooses the value for. *Drawn as rectangle*.
- **Utility node**, the parents are the variables on which the utility depends. *Drawn as a diamond*.
- Shows explicitly which decision nodes affect random variables



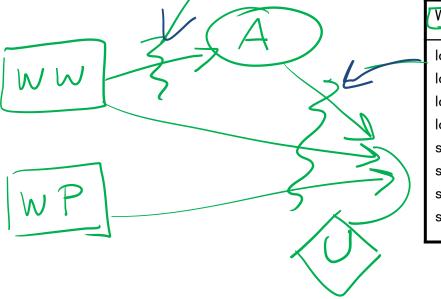
Single-stage decision networks

Extend belief networks with:

- Decision nodes, that the agent chooses the value for. Drawn as rectangle.
- on which the utility depends. *Drawn as a diamond*.

Which	Accident	
way		
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

 Shows explicitly which decision nodes affect random variables

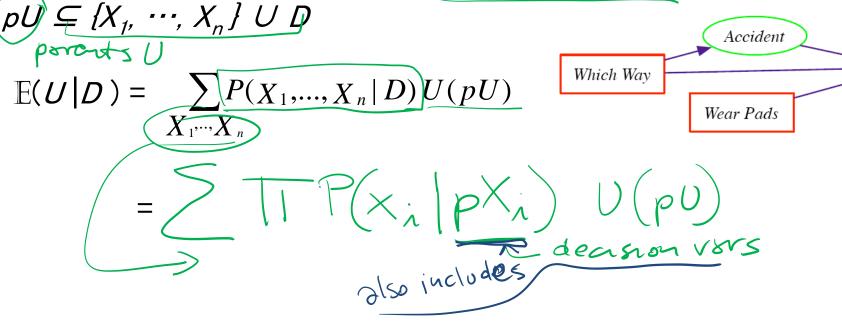


Which way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

Finding the optimal decision: We can use VE

Utility

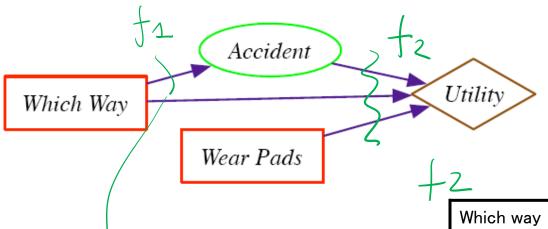
Suppose the random variables are X_{p} , ..., X_{n} , the decision variables are the set D, and utility depends on



To find the optimal decision we can use VE:

- 1. Create a factor for each conditional probability and for the utility
- 2. Multiply factors and sum out all of the random variables (This creates a factor on that gives the expected utility for each)
- 3. Choose the with the maximum value in the factor.

Example Initial Factors (Step1)



Which way	Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

Which way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

Example: Multiply Factors (Step 2a)

Which way	Accident	Probability
long	true	0.01
long	false	0.99
short	true	0.2
short	false	0.8

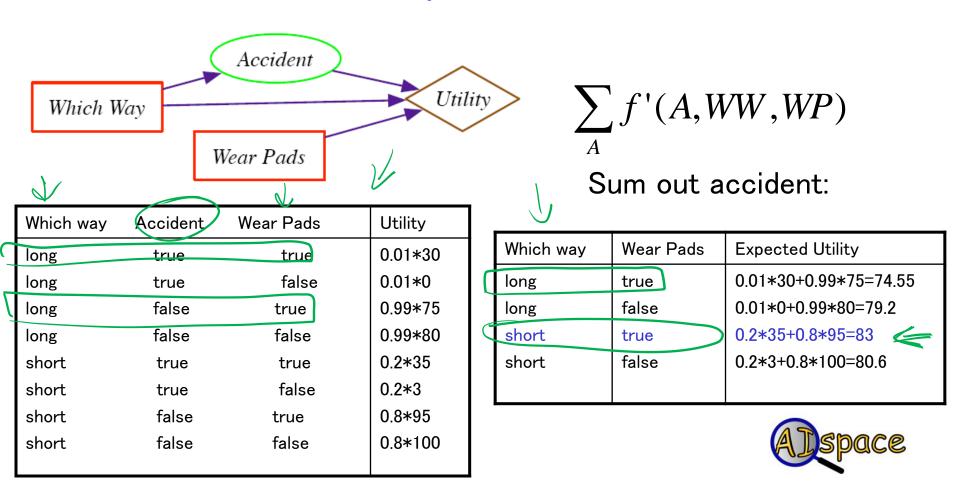
Which way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

$\sum f_1(WW, A) \times f_2(A, WW, WP)$
A

+3

Which way	Accident	Wear Pads	Utility
long long long	true true false false	true false true false	30 *
short short	true true	true false	3
short short	false false	true false	95 100

Example: Sum out vars and choose max (Steps 2b-3)



Thus the optimal policy is to take the **short way** and **wear pads**, with an **expected utility** of 83.

Learning Goals for today's class

You can:

- Compare and contrast stochastic single-stage
 (one-off) decisions vs. multistage decisions
- Define a Utility Function on possible worlds
- Define and compute optimal one-off decision (max expected utility)
- Represent one-off decisions as single stage decision networks and compute optimal decisions by Variable Elimination

Next Class (textbook sec. 9.3)

Set of primitive decisions that can be treated as a single macro decision to be made before acting

Sequential Decisions

- Agents makes observations
- Decides on an action
- Carries out the action