
CPSC 322, Lecture 9 Slide 1

Search: Advanced Topics
Computer Science cpsc322, Lecture 9

(Textbook Chpt 3.6)

Sept, 25, 2013

CPSC 322, Lecture 9 Slide 2

Lecture Overview

• Recap A*

• Branch & Bound

• A* tricks

• Other Pruning

CPSC 322, Lecture 6 Slide 3

A* advantages

What is a key advantage of A* ?

A. Does not need to consider the cost of the paths

B. Has a linear space complexity

C. It is often optimal

D. None of the above

CPSC 322, Lecture 9 Slide 4

Branch-and-Bound Search

 • Biggest advantages of A*….

• What is the biggest problem with A*?

• Possible, preliminary Solution:

CPSC 322, Lecture 9 Slide 5

Branch-and-Bound Search Algorithm

• Follow exactly the same search path as depth-first search

• treat the frontier as a stack: expand the most-recently
added path first

• the order in which neighbors are expanded can be
governed by some arbitrary node-ordering heuristic

CPSC 322, Lecture 6 Slide 6

Once this strategy has found a solution….

What should it do next ?

A. Keep running DFS, looking for deeper

solutions?

B. Stop and return that solution

C. Keep searching, but only for shorter solutions

D. None of the above

CPSC 322, Lecture 9 Slide 7

Branch-and-Bound Search Algorithm
• Keep track of a lower bound and upper bound on solution

cost at each path
• lower bound: LB(p) = f(p) = cost(p) + h(p)

• upper bound: UB = cost of the best solution found so far.

 if no solution has been found yet, set the upper bound to .

• When a path p is selected for expansion:
• if LB(p) UB, remove p from frontier without expanding it (pruning)

• else expand p, adding all of its neighbors to the frontier

Branch-and-Bound Analysis

• Complete ?

• Optimal ?

• Space complexity?

• Time complexity?

O(b+m) O(bm) O(bm) O(mb)

It depends yes no

It depends yes no

CPSC 322, Lecture 9 Slide 9

Branch-and-Bound Analysis

• Completeness: no, for the same reasons that DFS

isn't complete

• however, for many problems of interest there are no

infinite paths and no cycles

• hence, for many problems B&B is complete

• Time complexity: O(bm)

• Space complexity:…..

• Branch & Bound has the same space complexity as….

• this is a big improvement over …………..!

• Optimality: ……...

CPSC 322, Lecture 9 Slide 10

Lecture Overview

• Recap A*

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

CPSC 322, Lecture 9 Slide 11

Other A* Enhancements

The main problem with A* is that it uses exponential

space. Branch and bound was one way around

this problem. Are there others?

• …….

• Memory-bounded A*

CPSC 322, Lecture 9 Slide 12

(Heuristic) Iterative Deepening – IDA*

B & B can still get stuck in infinite (extremely long)

paths

• Search depth-first, but to a fixed depth

• if you don't find a solution, increase the depth tolerance

and try again

• depth is measured in………………

• Then update with the ………………….. that passed the

previous bound

Analysis of Iterative Deepening A* (IDA*)

• Complete and optimal:

• Space complexity:

• Time complexity:

O(b+m) O(bm)
O(bm) O(mb)

It depends yes no

O(b+m) O(bm)
O(bm) O(mb)

CPSC 322, Lecture 9 Slide 14

(Heuristic) Iterative Deepening – IDA*

• Counter-intuitively, the asymptotic complexity is

not changed, even though we visit paths multiple

times (go back to slides on uninformed ID)

CPSC 322, Lecture 9 Slide 15

Memory-bounded A*

• Iterative deepening A* and B & B use a tiny

amount of memory

• what if we've got more memory to use?

• keep as much of the fringe in memory as we can

• if we have to delete something:

• delete the worst paths (with …………………………..)

• ``back them up'' to a common ancestor

p

pn
p1

CPSC 322, Lecture 9 Slide 16

MBA*: Compute New h(p)

 













 h(p) Old)],h(p)cost(p -)cost(p[maxmin h(p) New ii

i

 













 h(p) Old)],h(p)cost(p -)cost(p[minmax h(p) New ii

i

p

pn
p1

 













 h(p) Old)],h(p)cost(p -)cost(p[maxmax h(p) New ii

i

CPSC 322, Lecture 9 Slide 17

Memory-bounded A*

• Iterative deepening A* and B & B use a tiny

amount of memory

• what if we've got more memory to use?

• keep as much of the fringe in memory as we can

• if we have to delete something:

• delete the worst paths (with …………………………..)

• ``back them up'' to a common ancestor

p

pn
p1

min max

max min

CPSC 322, Lecture 9 Slide 18

Lecture Overview

• Recap A*

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

CPSC 322, Lecture 10 Slide 19

Cycle Checking

You can prune a path that ends in a node already on the path.

This pruning cannot remove an optimal solution.

• The time is ………………… in path length.

CPSC 322, Lecture 10 Slide 20

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear

problem into an exponential one!

CPSC 322, Lecture 10 Slide 21

Multiple-Path Pruning

•You can prune a path to node n that you have

already found a path to

• (if the new path is longer – more costly).

CPSC 322, Lecture 10 Slide 22

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the
first path to n ?

• You can remove all paths from the frontier that use the
longer path. (as these can’t be optimal)

CPSC 322, Lecture 10 Slide 23

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the
first path to n ?

• You can change the initial segment of the paths on the
frontier to use the shorter path.

CPSC 322, Lecture 7 Slide 24

Learning Goals for today’s class

•Define/read/write/trace/debug different search

algorithms

•With / Without cost

•Informed / Uninformed

• Pruning cycles and Repeated States

CPSC 322, Lecture 9 Slide 25

Next class: Fri

• Dynamic Programming

• Recap Search

• Start Constraint Satisfaction Problems (CSP)

• Chp 4.

• Start working on assignment-1 !

