Search: Intro

Computer Science cpsc322, Lecture 4

(Textbook Chpt 3.0-3.4)

Sept, 11, 2013

CPSC 322, Lecture 4

Office Hours

Instructor

- Giuseppe Carenini (Fri 2-3; my office CICSR 105)
- **Teaching Assistants**
- Kamyar Ardekani
 Mon 2 3 X150 (Learning Center)
- Tatsuro Oya
 Thur 10 -11
 SAME
- Xin Ru (Nancy) Wang Tue 2 3 SAME

Lecture Overview

- Simple Agent and Examples \swarrow
- <u>Search Space Graph</u>
- Search Procedure

Simple Planning Agent

Deterministic, goal-driven agent

- Agent is in a start state
- Agent is given a goal (subset of possible states)
- Environment changes only when the agent acts
 Agent perfectly knows:
 - what actions can be applied in any given state
 - the state it is going to end up in when an action is applied in a given state
- The sequence of actions and their appropriate ordering is the solution

Three examples

1. A delivery robot planning the route it will take in a bldg. to get from one room to another

2. Solving an 8-puzzle

3. Vacuum cleaner world

Slide 7

Eight Puzzle

Start State

Actions: blank moves left, right, up down

Possible Goal: configuration with numbers in right sequence

Possible start state

Goal state

Example: vacuum world

- States
 - Two rooms: r1, r2
 - Each room can be either dirty or not
 - Vacuuming agent can be in either in r1 or r2

Possible start state

Possible goal state

Suppose we have the same problem with *k* rooms. The number of states is....

*•*233

Suppose we have the same problem with *k* rooms. The number of states is....

Lecture Overview

- Simple Agent and Examples
- Search Space Graph
- Search

How can we find a solution?

- How can we find a sequence of actions and their appropriate ordering that lead to the goal?
- Define underlying search space graph where nodes are states and edges are actions.

Vacuum world: Search space graph

states? Where it is dirty and robot location

actions? Deft, Right, Suck

Possible goal test? no dirt at all locations

Lecture Overview

- Simple Agent and Examples
- State Space Graph
- Search Procedure

Search: Abstract Definition

How to search

- Start at the start state ∠
- Consider the effect of taking different actions starting from states that have been encountered in the search so far
- Stop when a goal state is encountered

To make this more formal, we'll need review the formal definition of a graph...

Search Graph

A *graph* consists of a set *N* of *nodes* and a set *A* of ordered pairs of nodes, called *arcs*.

- Node n_2 is a *neighbor* of n_1 if there is an arc from n_1 to n_2 . That is, if $\langle n_1, n_2 \rangle \in A$.
- A *path* is a sequence of nodes $n_0, n_1, n_2, \dots, n_k$ such that $\langle n_{i-1}, n_i \rangle \in A$.
- A *cycle* is a non-empty path such that the start node is the same as the end node

A *directed acyclic graph* (DAG) is a graph with no cycles

Given a start node and goal nodes, a *solution* is a path from a start node to a goal node.

CPSC 322, Lecture 4

Examples for graph formal def.

Examples of solution

- Start state b4, goal r113
- Solution <b4, o107, o109, o113, r113>

but there are many others!

Graph Searching

Generic search algorithm: given a graph, start node, and goal node(s), incrementally explore paths from the start node(s).

Maintain a frontier of paths from the start node that have been explored.

As search proceeds, the frontier expands into the unexplored nodes until (hopefully!) a goal node is encountered.

The way in which the frontier is expanded defines the search strategy.

CPSC 322, Lecture 4

Problem Solving by Graph Searching

Branching Factor

The *forward branching factor* of a node is the number of arcs going out of the node

The *backward branching factor* of a node is the number of arcs going into the node

If the forward branching factor of any node is *b* iclicker. and the graph is a tree, how many nodes are *n* steps away from a node?

$$b = 1$$
 $h = 2$ 3 nb b^n n^b n/b
 $GPSC 322, Lecture 4$ Slide 26

 \square

Lecture Summary

- Search is a key computational mechanism in many AI agents
- We will study the basic principles of search on the simple deterministic planning agent model

Generic search approach:

- define a search space graph,
- start from current state,
- incrementally explore paths from current state until goal state is reached.

The way in which the frontier is expanded defines the search strategy.

Learning Goals for today's class

- Identify real world examples that make use of deterministic, goal-driven planning agents
- agents
 How many possible states

 Assess the size of the search space of a
 given search problem.
- Implement the generic solution to a search problem.

Next class (Fri)

• Uninformed search strategies (read textbook Sec. 3.5)

- First Practice Exercise 3.A
- http://www.aispace.org/exercises.shtml