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“Single” Action vs. Sequence of Actions

Set of primitive decisions that can be treate
as a single macro decision to be made
before acting

N A
* Agent makes observations
- Decides on an action &

e Carries out the action &



Lecture Overview

* Sequential Decisions

* Representation &
* Policies &

- Finding Optimal Policies &



Sequential decision problems

* A sequential decision problem consists of a
sequence of decision variables 0, ,..... D

« Each D;has an information set of variables pD,

whose value will be known at the time decision D,

is made. ]DD3 ‘—’@)2_ V-~ \/c\u}




Sequential decisions : Simplest possible

* Only one decision! (but different from one-off decisions)

« Early in the morning. | listen to the weather forecast, shall |
take my umbrella today? (I'll have to go for a long walk at

noon)
 What is a reasonable decision network ? . p@@@
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Sequential decisions : Simplest possible

* Only one decision! (but different from one-off decisions)

« Early in the morning. Shall | take my umbrella today? (Il
have to go for a long walk at noon)

 Relevant Random Variables?

—




Policies for Sequential Decision Problem: Intro

« A policy specifies what an agent should do under each

circumstance (for each decision, consider the parents of
the decision node)

In the Umbrella "degenerate” case:
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Sequential decision problems: “complete” Example

* A sequential decision problem consists of a sequence of
decision variables D, ,..... D

« Each D, has an information set of variables pD, whose
value will be known at the time decision 0D is made.

» decisions are totally ordered

AJ)space
« |f a decision Db comes before Da then (S ¢ p
* D,is a parent of D, r =7

e any parent of [, is a parent of D,



Policies for Sequential Decision Problems

» A policy is a sequence of 9J,,..

o, : dom(pD;)

..., 0, decision functions

- dom(D))

* This policy means that when the agent has observed

O e dom(pD-) it will do 5i(0) Example: 4
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Lecture Overview

* Recap
* Sequential Decisions

* Finding Optimal Policies



When does a possible world satisfy a policy?

« A possible world specifies a value for each random
variable and each decision variable.

- Possible world w satisfies policy 5, written w [ 5 if the
value of each decision variable is the value selected by its
decision function in the policy (when applied in w). <
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When does a possible world satisfy a policy?

- Possible world w satisfies policy &, written w F 5 if the
value of each decision variable is the value selected by its
decision function in the policy (when applied in w).
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Expected Value of a Policy

- Each possible world w has a probability P(w) and a utility
U(w)

* The expected utility of policy d is

> Bw)<U(w)

WS

 The optimal policy is one with the WX  expected utility.




Lecture Overview

* Recap

* Sequential Decisions

* Finding Optimal Policies
(Efficiently)



Complexity of finding the optimal policy: how
manyl_pl)olicies?_ - -
Tampering Fire OwW many aSSIQnme; 3s 0 parents”
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If a decision_D has kbinary parents, how many assignments of values
to the parents are there? e

2

If there are b possible actions (possible values for D), how many

different decision functions are there? > K

o

If there are d decisions, each with & binary parents and b possible
actions, how many policies are there? ( ZK> @\




Finding the optimal policy more efficiently: VE

. Create a factor for each conditional prabability table and a &
factor for the utility. )

. Sum out random variables that are not parents of a decision
node.

. Eliminate (aka sum out) the decision variables
. Sum out the remaining random variables.

. Multiply the factors: this is the expected utility of the optimal
policy.
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Eliminate the decision Variables: step3 details

« Select a variable D that corresponds to the latest decision

to be made

* this variable will appear in only one factor with its parents

* Eliminate Dby maximizing. This returns:

* A new factor to use in VE, maxg 7

* The optimal decision function for D, arg max, 7

* Repeat till there are no more decision nodes. ,
(=
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VE elimination reduces complexity of finding the

optimal policy
 We have seen that, if a decision D has A binary parents, there
are b possible actions, If there are d decisions,

k .
* Then there are:(,ﬂ?2 )d ,OO//C‘/G'SLJ

« Doing variable elimination lets us find the optimal policy after

considering only d . policies (we eliminate one decision at
a time)
* VE is much more efficient than searching through policy
space.

* However, this complexity is still doubly-exponential we'll only
be able to handle relatively small problems. Mﬁkg am""p
p)
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Learning Goals for today’s class

You can:

* Represent sequential decision problems as
decision networks. And explain the non forgetting

property
 Verify whether a possible world satisfies a policy )

and define the e oli

« Compute the number of policies for a decision
problem %

« Compute the optimal policy by Variable Elimination
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Big Picture: Planning under Uncertainty

r———————

Decision Theory

h__ I I -

One-Off Decisions/ Markov Decision Processes (MDPs)
Sequential Decisions /\

Fully Observable Partially
MDPs Observable MDPs
(POMDPs)

Decision Support Systems
(medicine, business, ...)

Some Applicat, o
.

Economics

Control
Systems
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Cpsc 322 Big Picture
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After 322 .....
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Announcements

Homework #4, due date: Mon Dec 2, 1PM.
You can drop it at my office (ICICS 105) or by handin.

. FINAL EXAM: Tue Dec10, 3:30 pm (2.5 hours, PHRM 1101)

é’d?f% VY% c’,o/o s
Final will comprise hort questions # 3-4 problem
« Work on all practice-exercises (including 9.B) and sample

problems

—+ While you revise the learning goals, work on review questions
- | may even reuse some verbatim ©

« Come to remaining Office hours! (mine next week Fri 3-4:30)

« —Fillout Online Teaching Evaluations Survey.
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