Decision Theory: Sequential Decisions

Computer Science cpsc322, Lecture 34 (Textbook Chpt 9.3)

Nov, 29, 2013

"Single" Action vs. Sequence of Actions

Set of primitive decisions that can be treated as a single macro decision to be made *before acting*

- Agent makes observations
- Decides on an action *L*
- Carries out the action ∠

Lecture Overview

- Sequential Decisions
 - Representation
 - Policies 🧲
- Finding Optimal Policies

Sequential decision problems

- A sequential decision problem consists of a sequence of decision variables D_1, \ldots, D_n .
- Each D_i has an information set of variables pD_i , whose value will be known at the time decision D_i is made. $PD_3 = \int D_2 \sqrt{3} \sqrt{4}$

Sequential decisions : Simplest possible

- Only one decision! (but different from one-off decisions)
- Early in the morning. I listen to the weather forecast, shall I take my umbrella today? (I'll have to go for a long walk at noon)

Sequential decisions : Simplest possible

- Only one decision! (but different from one-off decisions)
- Early in the morning. Shall I take my umbrella today? (I'll have to go for a long walk at noon)
- Relevant Random Variables?

Policies for Sequential Decision Problem: Intro

 A policy specifies what an agent should do under each circumstance (for each decision, consider the parents of the decision node)

In the Umbrella "degenerate" case:

Sequential decision problems: "complete" Example

Utility

- A sequential decision problem consists of a sequence of decision variables D_1, \ldots, D_n .
- Each D_i has an information set of variables pD_i , whose value will be known at the time decision D_i is made.

- if a decision D_b comes before D_a , then
 - D_{h} is a parent of D_{a}
 - any parent of D_h is a parent of D_a

Policies for Sequential Decision Problems

- A policy is a sequence of $\delta_1, \dots, \delta_n$ decision functions $\delta_i : \operatorname{dom}(pD_i) \to \operatorname{dom}(D_i)$
- This policy means that when the agent has observed $O \in \text{dom}(pD_i)$, it will do $\delta_i(O) = \text{Example:} \quad \mathbf{agent}$

Lecture Overview

- Recap
- Sequential Decisions
- Finding Optimal Policies

When does a possible world satisfy a policy?

- A possible world specifies a value for each random variable and each decision variable.
- **Possible world** *w* **satisfies policy** δ , written $w \models \delta$ if the value of each decision variable is the value selected by its decision function in the policy (when applied in *w*).

When does a possible world satisfy a policy?

• Possible world *w* satisfies policy δ , written $w \models \delta$ if the value of each decision variable is the value selected by its decision function in the policy (when applied in *w*).

Expected Value of a Policy

- Each possible world w has a probability P(W) and a utility • U(w)
- The expected utility of policy δ is •

$$\sum_{\substack{w \neq \delta}} P(w) * U(w)$$

The optimal policy is one with the

expected utility.

Lecture Overview

- Recap
- Sequential Decisions
- Finding Optimal Policies (Efficiently)

Complexity of finding the optimal policy: how

- If a decision <u>*D* has *k* binary parents</u>, how many assignments of values to the parents are there? 2K
- If there are *b* possible actions (possible values for D), how many • i 2K different decision functions are there?
- If there are d decisions, each with k binary parents and b possible ۲ actions, how many policies are there?

Finding the optimal policy more efficiently: VE

- 1. Create a factor for each conditional probability table and a \angle factor for the utility.
- 2. Sum out random variables that are not parents of a decision node.
- 3. Eliminate (aka sum out) the decision variables
- 4. Sum out the remaining random variables.
- 5. Multiply the factors: this is the expected utility of the optimal policy.

Eliminate the decision Variables: step3 details

- Select a variable D that corresponds to the latest decision to be made
 - this variable will appear in only one factor with its parents
- Eliminate *D* by maximizing. This returns:
 - A new factor to use in VE, max_D f
 - The optimal decision function for D, arg max_D f
- Repeat till there are no more decision nodes.

VE elimination reduces complexity of finding the optimal policy

- We have seen that, if a decision *D* has *k* binary parents, there are *b* possible actions, If there are d decisions,
- Then there are: $(b^{2^k})^d$ policies
 - Doing variable elimination lets us find the optimal policy after considering only d. b^{2k} policies (we eliminate one decision at a time)
 - VE is much more efficient than searching through policy space.
 - However, this complexity is <u>still doubly-exponential</u> we'll only be able to handle relatively small problems.
 + give up nonforgetting somp
 + give up nonforgetting somp

Learning Goals for today's class

You can:

- Represent sequential decision problems as decision networks. And explain the non forgetting property
- Verify whether a possible world satisfies a policy and define the expected value of a policy
- Compute the <u>number of policies</u> for a decision problem
- Compute the optimal policy by Variable Elimination

Big Picture: Planning under Uncertainty

Cpsc 322 Big Picture

Announcements

Homework #4, due date: Mon Dec 2, 1PM.

You can drop it at my office (ICICS 105) or by handin.

• FINAL EXAM: Tue Dec10, 3:30 pm (2.5 hours, PHRM 1101)

Final will comprise: 10 -15 short questions + 3-4 problems

- Work on all practice exercises (including 9.B) and sample problems
- While you revise the learning goals, work on review questions
 I may even reuse some verbatim ^(C)
- Come to remaining Office hours! (mine next week Fri 3-4:30)
- Fill out Online Teaching Evaluations Survey.