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‘Stationary Markov Chain (SMC)

OnaOnaOm 205420
@Markm}Chain - for all t >0 & clow CS%BIZK
P (S Sp-...S) =5t |5, yane

* P(Sii Se) #ie some Y E
We only need to specify QDC&) li and 1@(5@1) ge>

« Simple Model, easy to specify
« Often the natural model K xK

« The network can extend indefinitely K P{gb

+ Variations of SMC are at the core of most Natural$  gstrib.
Language Processing (NLP) applications!
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Lecture Overview

 Markov Models
* Markov Chain
* Hidden Markov Models
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How can we minimally extend Markov Chains?
fﬂ 64_ t&, +3 o o < ™

- Maintaining the Markov and stationary assumptions?

A useful situation to model is the one in which:

* the reasoning system does not have access to the
states

« but can make observations that give some
iInformation about the current state
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Hidden Markov Model

« A Hidden Markov Model (HMM) starts with a Markov
chain, and adds a noisy observation about the state at

each time step: ~

* |domain(S)| = &

* |domain(O)| = A

« P(S5,) specifies initial conditions

bclicker.

%P(S,Hl S, specifies the dynamics A . 2xh

B. hx h
C.kxh
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Hidden Markov Model

« A Hidden Markov Model (HMM) starts with a Markov
chain, and adds a noisy observation about the state at

each time step: ~

* |domain(S)| = &

* |domain(O)| = A

- P(S,) specifies initial conditions <

b P (S,.,S) specifies the dynamics |~ < Mé\ﬁ%

o P (0| S,) specifies the sensor model
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Example: Localization for “Pushed around” Robot

 Localization (where am 1?) is a fundamental problem

in robotics

« Suppose a robot is in a circular corridor with 16

locations
]

=

i NEN BEEE

6 7 8 9 1o 11 12 13 14 15

0 1 2 3 4 S

* There are four doors at positions: 2, 4, 7, 11
* The Robot initially doesn’t know where it is

- The Robot is pushed around. After a push it can stay in

the same location, move left or right.
« The Robot has a Noisy sensor telling whether it is in front

of a door
o a dc

——
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This scenario can be represented as...
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. Example Stochastic Dynamics: when pushed, it stays in the » %

/
same location p=0.2, moves one step left or right with equal
probability
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This scenario can be represented as...

[.oc.,l @ > [oc > L oc > -
< NN

@ @@ @

« Example Stochastic Dynamics: when pushed, it stays in the,'\“
same location p=0.2, moves left or right with equal probability

Y o 1 2 ----I5locyyg
P(Loc,”/Locy o(].4] o] - m
|Gl e2 -qlo-
2 |
Loct 3
'
P(Loc,) - %U%. -

o | CPSC 322, Lecture 32 15 Slide 12



This scenario can be represented as...

. @@ ﬁls WITNIIT
b dom(Locz)= (0,1, - 15}

Example of Noisy s _Qnsm__telllng ¢ ] PO,/ Loc yj
whether it is in front of a doorv/ —

* Ifitis in front of a door P(O;=T)

» If not in front of a door P(O,=T) = i l‘ ' 3
. & .2

\b (N"\°' _konS - -G

prt A SIS
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Useful inference in HMMs

» Localization: Robot starts at an unknown
location and it is pushed around ¢ times. It
wants to determine where it is

JECA P

* In general: compute the posterior distribution over
(the current state) given all evidence to date

P(S,/O,... 0,)
7

/
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Example : Robot Localization

« Suppose a robot wants to determine its location based on its
actions and its sensor readings

« Three actions: goRigh, ggL_efz‘, Slay
« This can be represented by an augmented HMM

’ hd ~ b
@ @
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Robot Localization Sensor and Dynamics Model

o B — T

3 4 5 6 7 8 9 0 11 12 13 14 15

PCo | LOCt\

- Sample Sensor Model (assume same as for pushed around)
- Sample Stochastic Dynamics: P(Loc;, ,/ Acz‘/on,, Loc,)

P(Locf”:@/ Action ;= goRight, Loc ;= L) = 0.1

P(LocH ;= L+1/ Action , = goRight, Loc ;= L) ‘ &
_P(Loc;, =L +2[Action = goRight, Loc ,= L) =0.074

oP(Loc; . ,=L"[Action , = goRight, Loc ; = L) 5 0.002) for all other locations L’
X3

* All location arithmetic is modulo 16
« The action @Leﬂworlis the same but to the left
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Dynamics Model More Details

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample Stochastic Dynamics: P(Loc, ., ,/ Action, Loc ,)
P(Loc,, ,= L | Action , = goRight, Loc =) 0.1 |

P(Loc,, ,=L+1 [ Action , = goRight, Loc ,=L) = 0.8

P(Loc,, ,=L + 2 [Action ;= goRight, Loc ,=L) = 0.074

PlLocs, =L’ / Action , = goRight, Loc , = L = for all other /ocafion%\’ﬂ\ wn S0
< D 4y
%"w&\ 2.3 G/ .5 46_(,]/@35 o sl IS
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Robot Localization additional sensor

@ Q. Q. @ Le=T
‘ So Sy S, S3 54 :46 Robst
Sewse s

| l%h(/’

®» Yo Ou YUe O ©

 Additional Light Sensor: there is light coming through an

opening at location 10~ p 1, /Loc,)
?Q/t’/)(\ _ A/, /2 B e YA
W g fsMasag b -

s

10 11

0] 1 2 3 <4 5 ] 7 8 9 12 14 15

* Info from the two sensors is combined :“Sensor FL\13|0n
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The Robot starts at an unknown location and must
determine where it is

The model appears to be too ambiguous
* Sensors are too noisy
* Dynamics are too stochastic to infer anything

But inference actually works pretty well.
Let's check:

http://www.cs.ubc.ca/spider/poole/demos/localization
/localization.html

You can use standard Bnet inference. However you typically take
advantage of the fact that time moves forward (not in 322)

CPSC 322, Lecture 32 Slide 19



Sample scenario to explore in demo

Keep making observations without moving. What
happens?

Then keep moving without making observations.
What happens?

Assume you are at a certain position alternate
moves and observations
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HMMs have many other applications....

Natural Language Processing: e€.g., Speech Recognition

« Slales: phonem \word
e\ e (D,

« (Observations:. @US’[IC &g@ phoneme
Bioinformatics: Gene Finding
« Slafes: coding / non-coding region xXx V' vV < \
* Observations: DNA Sequences . ATC G A A

For these problems the critical inference is:

find the most likely sequence of states given a
sequence of observations |
\/ l+@\r‘0\ )4 l &O
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Markov Models

Markov Chains

Simplest Possible
Dynamic Bnet

\\L Add noisy

Add Actions and

Hidden Markov 2 \ Observations
Model about the state
x at time t
//769 MbP (4
= 2

Values (Rewards)| Markov Decision
( %) Proces7Zs (MDPs) Z
/\Dbr‘h‘b‘/\ ta\o\e,

Qlose
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Learning Goals for today’s class

You can:

» Specify the components of an Hidden Markov
Model (HMM) |

» Justify and apply HMMs to Robot Localization

Clarification on second LG for last class

of a Natural Language sentence (NOT to estimate the

You can:
« Justify and apply Markov Chains to compute the probability§
conditional probs- slide 18)
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Next week

Environment
Deterministic Stochastic
Problem Arc Consistency | (o €SP
‘Constraint |ygrs + | ocarch 7
Stafic Satlsfactlor}\ Constraints ELS o
- —_J(sP, \Belief Nets )
FM Logres \«aﬂl ‘9;,,\'6"‘}6 Var. Elimination
Search 7| %"
\Markov Chains and HMMs
Sequential W gDecision Nets N\
m &0‘”{:‘0\%‘ __— Var. Elimination |)
—— | |Search 200" Markoy Detision Brotesses
Representation rvr/, V;luéxlfe ;a)iién

Reasoning
. Technique |
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Next Class

» One-off decisions(7extBook 9.2)
 Single Stage Decision networks ( 9.2.7)
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People

Instructor
« Giuseppe Carenini ( carenini@cs.ubc.ca; office CICSR 105)

Teaching Assistants

- Kamyar Ardekani kamyar.ardekany@gmail.com yf ; =

« Tatsuro Oya toya@cs.ubc.ca

« Xin Ru (Nancy) Wang nancywang1991@yahoo.ca
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