Probability and Time: Markov Models

Computer Science cpsc322, Lecture 31

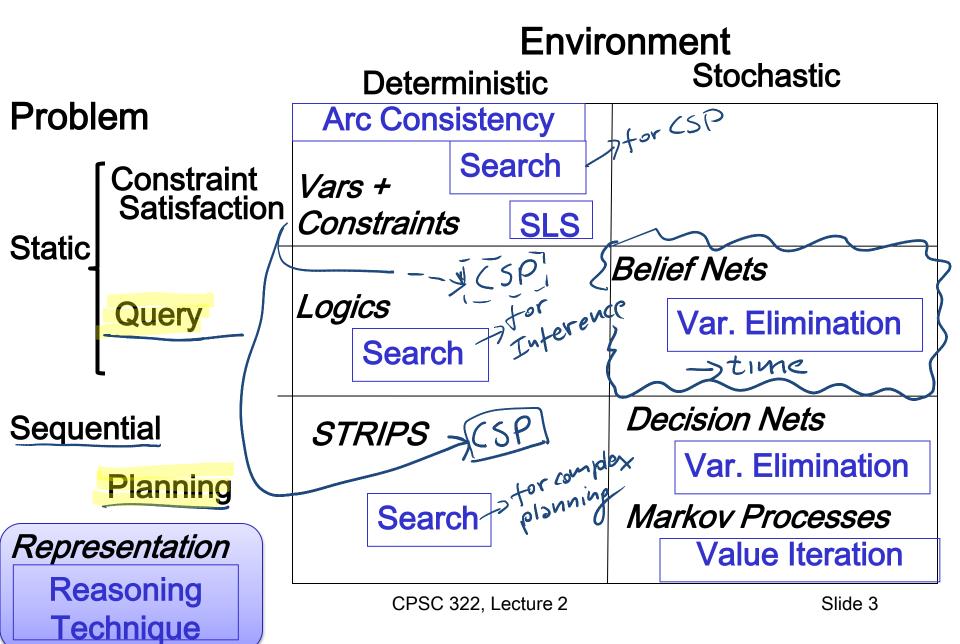
(Textbook Chpt 6.5.1)

Nov, 22, 2013

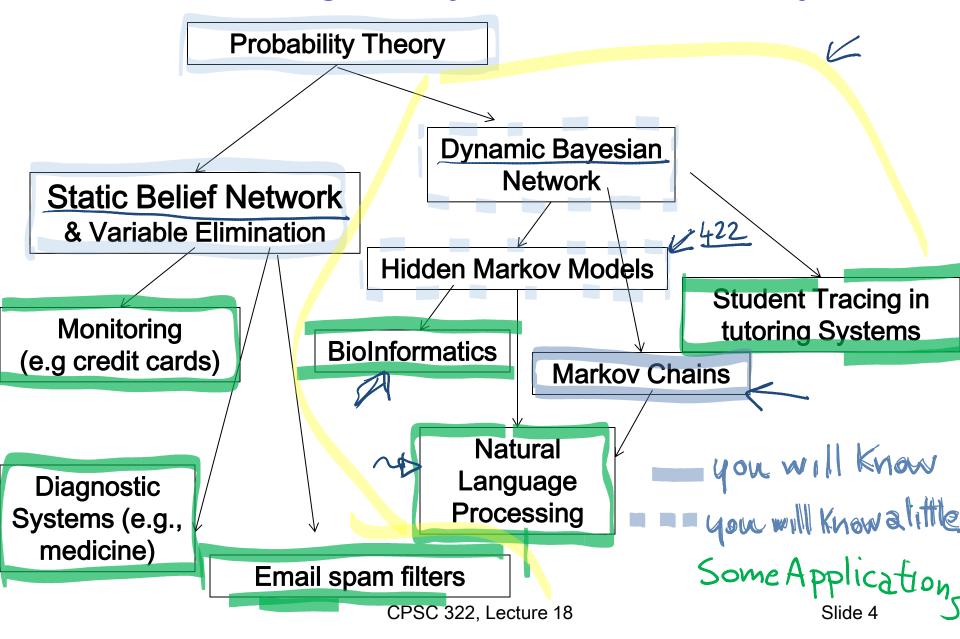
Lecture Overview

- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Big Picture: R&R systems



Answering Query under Uncertainty



Lecture Overview

- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Modelling static Environments

So far we have used Bnets to perform inference in static environments

• For instance, the system keeps collecting evidence to diagnose the cause of a fault in a system (e.g., a car).

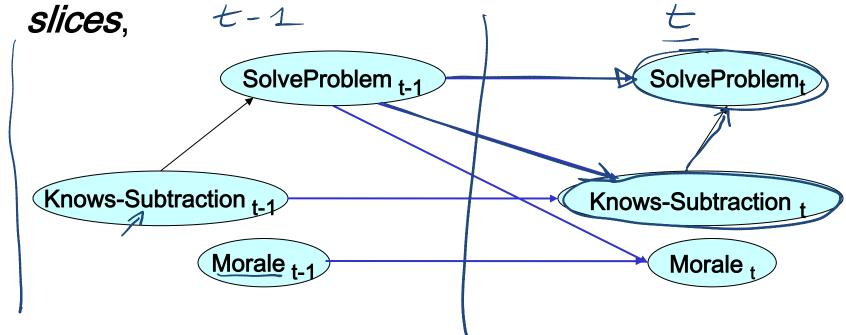
 The environment (values of the evidence, the true cause) does not change as I gather new evidence

What does change?

The system's beliefs over spossible causes

Modeling Evolving Environments

- Often we need to make inferences about evolving environments.
- Represent the state of the world at each specific point in time via a series of snapshots, or *time*



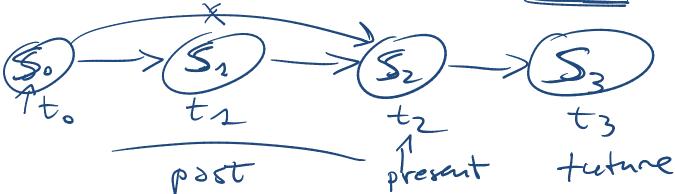
Tutoring system tracing student knowledge and morale

Lecture Overview

- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

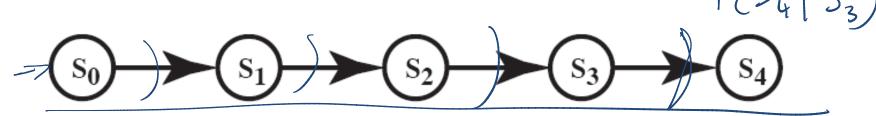
Simplest Possible DBN

• One random variable for each time slice: let's assume S_t represents the state at time t. with domain $\{v_1 \dots v_n\}$



- Each random variable depends only on the previous one
- Thus $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$
- Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."

Simplest Possible DBN (cont')



• How many CPTs do we need to specify?

4 $P(S_1|S_0)$ $P(S_2|S_1)$ etc.

A. 1

C. 2

D. 3

- Stationary process assumption: the mechanism that regulates how state variables change overtime is stationary, that is it can be described by a single transition model
- · P(St|St-1) is the same for all t

Stationary Markov Chain (SMC)

A stationary Markov Chain: for all t >0

- $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$ and Markov assumption

We only need to specify $P(S_t)$ and $P(S_{t+1}|S_t)$

- Simple Model, easy to specify
- Often the natural model <
- The network can extend indefinitely
- Variations of SMC are at the core of most Natural sed in the Language Processing (NLP) applications! also used by Good lets Page Rank also (used by web pages)

Stationary Markov Chain (SMC)

A stationary Markov Chain: for all t >0

- $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$ and Markov assumption

So we only need to specify?

A.
$$P(S_{t+1}|S_t)$$
 and $P(S_0)$

B.
$$P(S_0)$$

$$\mathbf{C}$$
 . $P(S_{t+1}|S_t)$

D.
$$P(S_t|S_{t+1})$$

Stationary Markov-Chain: Example

Domain of variable S_i is {t, q, p, a, h, e}

Probability of initial state $P(S_0)$

Stochastic Transition Matrix $P(S_{t+1}|S_t)$

Which of these two is a possible STM?

t	.6
q	.4
р	0
а	₹
h	O
е	

$$S_{t+1}$$

	t	q	р	а	h	е
t	0	.3	0	.3	.4	0
q	.4	0	.6	0	0	0
р	0	0	1	0	0	0
а	0	0	.4	.6	0	0
h	0	0	0	0	0	1
е	1	0	0	0	0	0

 S_{t+1}

	t	q	р	а	h	е
t	1	0	0	0	0	0
q	0	1	0	0	0	0
p	.3	0	1	0	0	0
а	0	0	0	1	0	0
h	0	0	0	0	0	1
е	0	0	0	.2	0	1

A.Left one only

C. Both

clicker.

B. Right one only

D. None

Stationary Markov-Chain: Example

Domain of variable S_i is {t, q, p, a, h, e}

We only need to specify...

$$P(S_0)$$

Probability of initial state

t	.6				
q	.4				
р	0				
а	9				
h	0				
е	0				

1.

Slide 14

Stochastic Transition Matrix

$$P(S_{t+1}|S_t)$$

St) St+1
6 values 6 values

							V	
		t	q	р	а	h	е	
	t	0	ო	0	.3	.4	0	
7	q	.4	0	.6	0	0	0 6	P(St+1 St=9)
	p	0	0	1	0	0	0	$P(S_{t+1} S_{t}=9)$ $P(S_{t+1} S_{t}=9)$
$S_t \rightarrow$	а	0	0	.4	.6	0	0	
7	h	0	0	0	0	0	1	
	Э	1	0	0	0	0	0	

CPSC 322, Lecture 30

Markov-Chain: Inference

Probability of a sequence of states S₀ ... S_T

CPSC 322, Lecture 30

Slide 15

Lecture Overview

- Recap
- Temporal Probabilistic Models
- Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Key problems in NLP

Noun verb

 $P(w_1,...,w_n)$?

"Book me a room near UBC" $P(w_1,...,w_n)$ Assign a probability to a sentence (a sequence of words)

- -> Part-of-speech tagging -> Symmarization, Machine
- → Word-sense disambiguation, → Translation......
 - Probabilistic Parsing

- Predict the next word $P(w_n | w_1 w_{n-1}) =$ Speech recognition

 Hand-writing recognition $= P(w_1 ... w_n) / P(w_1 ... w_{n-1})$

 - Augmentative communication for the disabled

 $P(w_1,...,w_n)$?

Impossible to CPSC503 Winter 2008 estimate (8)

 $P(w_1,...,w_n)$?

Impossible to estimate!

Assuming 10^5 words and average sentence contains 10 words $(10^5)^{10} = 10^{50}$

-would contain probabilities

collected from the whole

Google language repository (22 Sept. 2006) web contained "only": 95,119,665,584 sentences

n 1011

Most sentences will not appear or appear only once ⊗

What can we do?

Make a strong simplifying assumption!

Sentences are generated by a Markov Chain

we state beginning of a sentence

$$P(w_1,...,w_n) = P(w_1|~~) \prod_{k=2}^n P(w_k|w_{k-1})~~$$

$$= P(w_1|~~) P(w_2|w_2) P(w_3|w_2) ... P(w_k|w_{k-1})~~$$
P(The big red dog barks)=

These probs can be assessed in practice!

Estimates for Bigrams P(w) | w)

Count How many

Silly language repositories with only two sentences:

"<S>The big red dog barks against the big pink dog"

"<S>The big pink dog is much smaller"

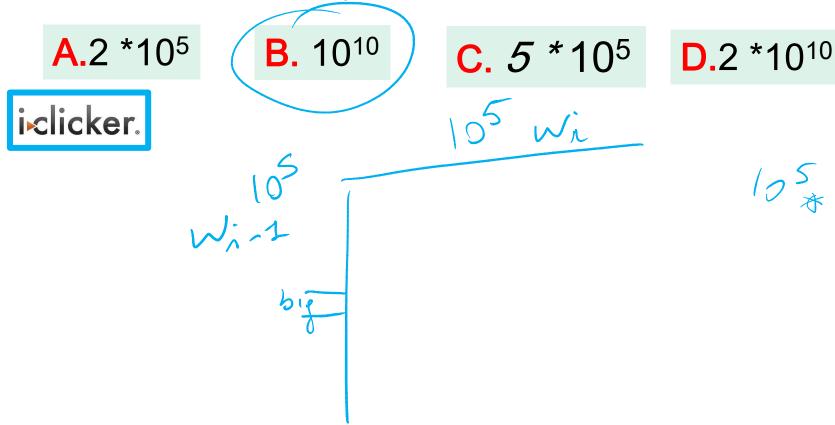
$$P(red \mid big) = \frac{P(big, red)}{P(big)} = \frac{C(big, red)}{V_{pairs}} = \frac{C(big, red)}{C(big)} = \frac{C(big, red)}{C(big)} = \frac{C(big)}{C(big)} = \frac{C(bi$$

Bigrams in practice...

If you have 10⁵ words in your dictionary $P(w_i | w_{i-1})$

$$P(w_i \mid w_{i-1})$$

will contain this many numbers....??



105 105

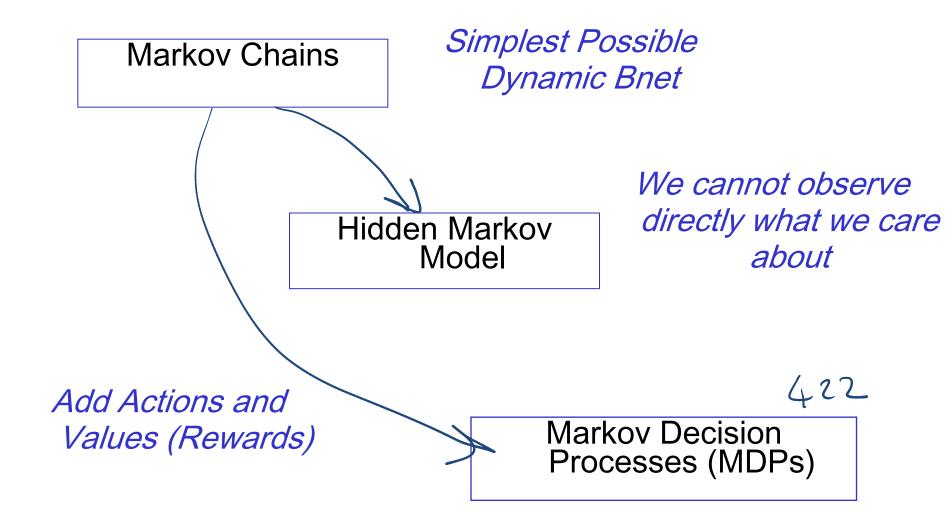
Learning Goals for today's class

You can:

Specify a Markov Chain and compute the probability of a sequence of states

• Justify and apply Markov Chains to compute the probability of a Natural Language sentence (NOT to compute the conditional probabilities - slide 18

Markov Models



Next Class

- Finish Probability and Time: Hidden Markov Models (HMM) (TextBook 6.5.2)
- Start Decision networks (TextBook chpt 9)
 Course Elements
- Assignment 4 is available on Connect Due on Dec the 2nd.

Office Hours today
$$2-3 => 3-4$$