Reasoning Under Uncertainty: Bnet Inference

(Variable elimination)

Computer Science cpsc322, Lecture 29

(Textbook Chpt 6.4)

Nov, 18, 2013

CPSC 322, Lecture 29

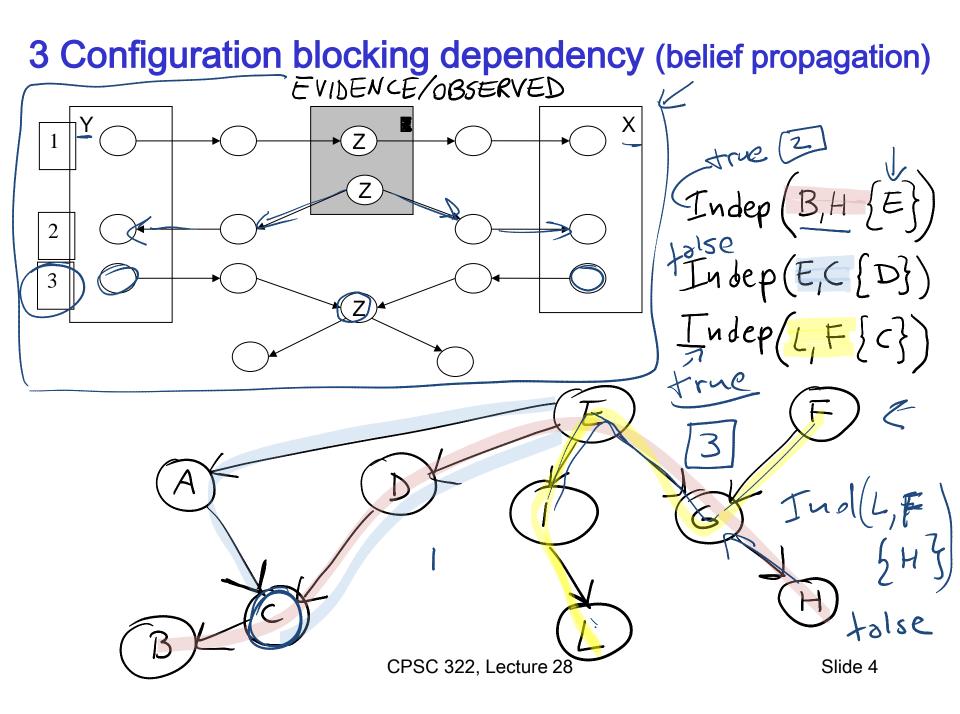
Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Intro

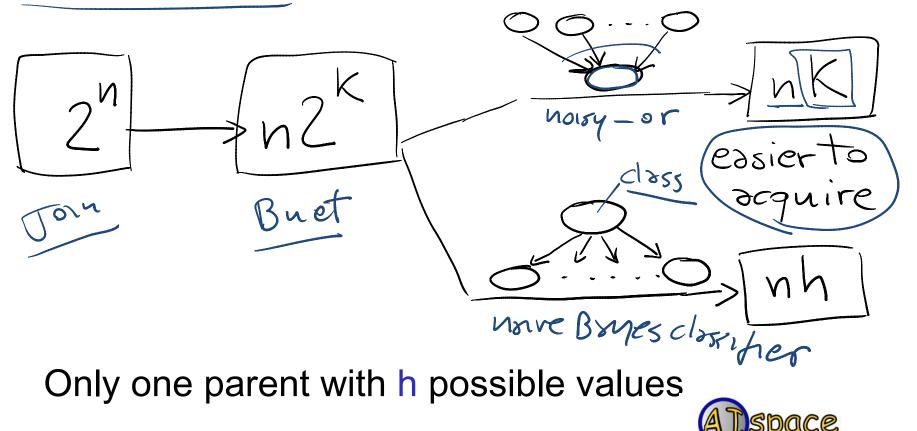
Learning Goals for Wed's class

You can:

- In a Belief Net, determine whether one variable is independent of another variable, given a set of observations.
- Define and use Noisy-OR distributions.
 Explain assumptions and benefit.
- Implement and use a naïve Bayesian
 classifier. Explain assumptions and benefit.



n Boolean variables, <u>k max.</u> number of parents



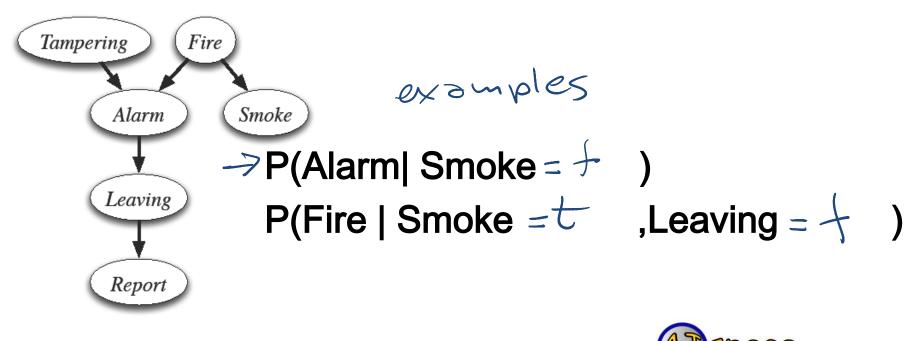
Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Bnet Inference

• Our goal: compute probabilities of variables in a belief network

What is the posterior distribution over one or more variables, conditioned on one or more observed variables?

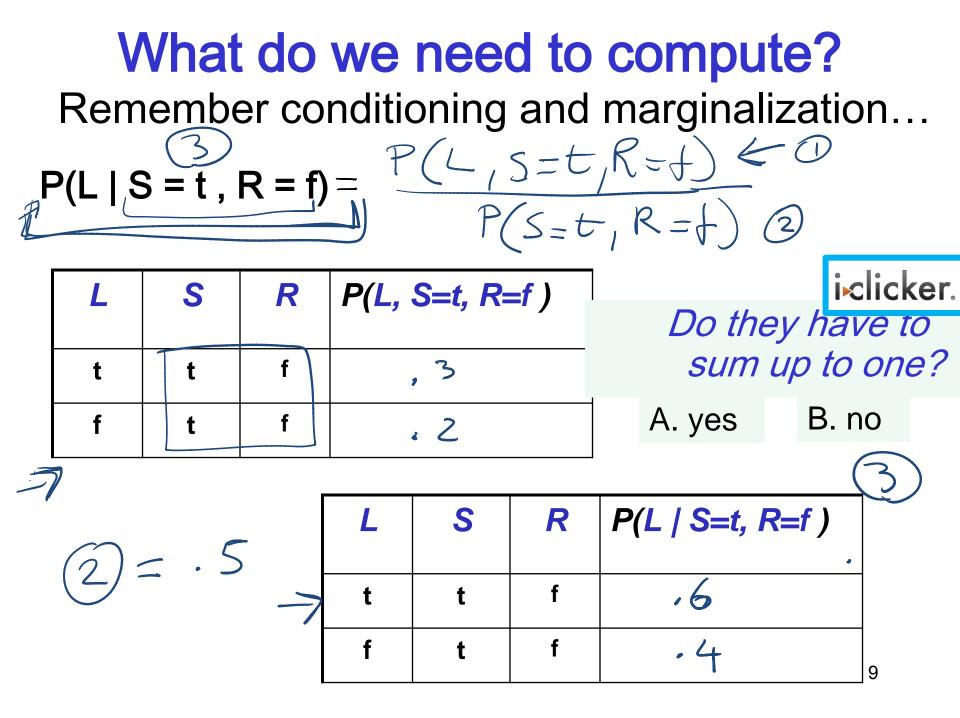


Bnet Inference: General

- Suppose the variables of the belief network are X_1, \dots, X_n . • \hat{Z} is the query variable
- $Y_1 = v_1, \dots, Y_j = v_j$ are the observed variables (with their values)
- Z_1, \ldots, Z_k are the remaining variables
- What we want to compute: 1

$$P(Z | Y_1 = v_1, \dots, Y_j = v_j)$$

Example: $P(L | S = t, R = f)^{L}$ $Z \iff L$ $Y_{2} Y_{2} \iff S, R$ $T_{1} F_{2}$



In general.....

$$P(Z | Y_1 = v_1, \dots, Y_j = v_j) = \begin{bmatrix} P(Z, Y_1 = v_1, \dots, Y_j = v_j) \\ P(Y_1 = v_1, \dots, Y_j = v_j) \end{bmatrix} = \begin{bmatrix} P(Z, Y_1 = v_1, \dots, Y_j = v_j) \\ P(Z | Y_1 = v_1, \dots, Y_j = v_j) \\ P(Z | Y_1 = v_1, \dots, Y_j = v_j) \end{bmatrix} = \begin{bmatrix} P(Z, Y_1 = v_1, \dots, Y_j = v_j) \\ P(Z | Y_1 = v_1, \dots, Y_j = v_j) \\ P(Z | Y_1 = v_1, \dots, Y_j = v_j) \\ P(Z | Y_1 = v_1, \dots, Y_j = v_j) \end{bmatrix} = \begin{bmatrix} P(Z, Y_1 = v_1, \dots, Y_j = v_j) \\ P(Z | Y_1 = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j = v_j) \\ P(Z | Y_j = v_j, \dots, Y_j =$$

- We only need to **compute the** humerstor and then **normalize**
- This can be framed in terms of **operations between factors** (that satisfy the semantics of probability)

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_1, \dots, X_j as $\downarrow (X_1, \dots, X_j)$

- A factor can denote:
 - One distribution
 - One *partial* distribution
 - Several distributions
 - Several *partial* distributions over the given tuple of variables

Factor: Examples

 $P(X_1, X_2)$ is a factor $f(X_1, X_2)$

Distribution

<i>X</i> ₁	$X_2 \qquad \qquad f(X_1, X_2)$			
Т	Т	.12		
Т	F	.08		
F	Т	.08		
F	F	.72		

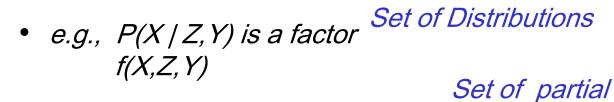
Partial distribution

 $P(X_1, X_2 = v_2)$ is a factor $f(X_1)_{X_2 = v_2}$

X ₁	X ₂	$f(X_1)_{X_2=F}$
Т	F	.08
F	F	.72

Factors: More Examples

- A factor denotes one or more (possibly partial) distributions over the given tuple of variables
- e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$ Distribution
- e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor $f(X_1, X_2)_{X3 = v_3}$



Y

t

f

f

Ζ

t

t

f

val

0.1

0.9

0.2

8.0

0.4

0.6

03

0.7

Х

t

f

f

Distributions

f(X,Y,Z) ??

e.g., P(X₁, X₃ = v₃ / X₂) is a factor
 f(X₁, X₂) _{X3 = v3}

A

C. P(Z|X,Y) D. None of the above

CPSC 322, Lecti

Factors

P(Z|X,Y)

Ζ

t

val

0.1

0.9

0.2

8.0

0.4

0.6

03

0.7

Y

f

t

f

f

- A factor is a representation of a function from a tuple of random variables into a number. (2)
- We will write factor f on variables X_1, \dots, X_j as $\downarrow (X_1, \dots, X_j)$
- A factor denotes one or more (possibly partial) distributions over the given tuple of variables
 - e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$ Distribution
 - e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor *Partial distribution* $\underbrace{\frac{t}{t}}_{t}$
- e.g., P(X | Z, Y) is a factor f(X,Z,Y) f(X,Z,Y)
- e.g., $P(X_1, X_3 = v_3)/X_2$) is a factor Set of partial $f(X_1, X_2)|_{X_3 = v_3}$ Distributions

CPSC 322, Lectı

Manipulating Factors:

We can make new factors out of an existing factor

Our first operation: we can <u>assign</u> some or all of the variables of a factor.

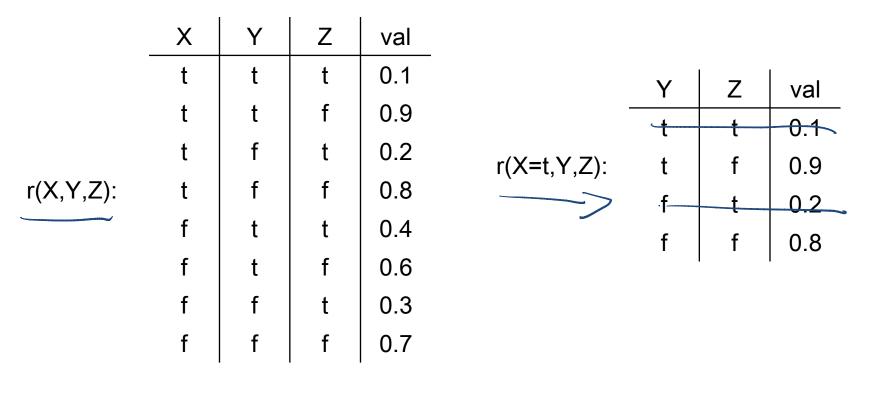
Y Ζ Х val t t 0.1 t f 0.9 t f t 02 t f(X,Y,Z): f f 0.8 Ŧ $\hat{0.4}$ ŧ 0.60.3 0.7

What is the result of assigning X=t?

$$f(X=t,Y,Z)$$

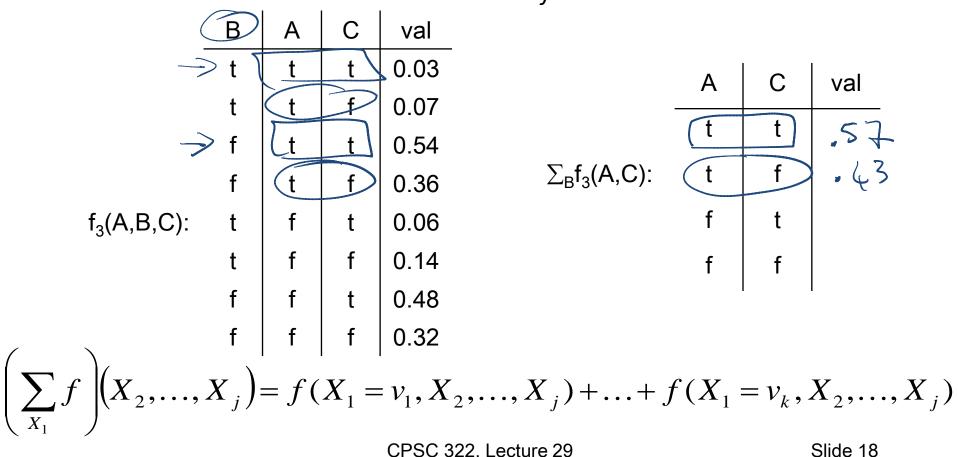
 $f(X, Y, Z)_{X = t}$

More examples of assignment



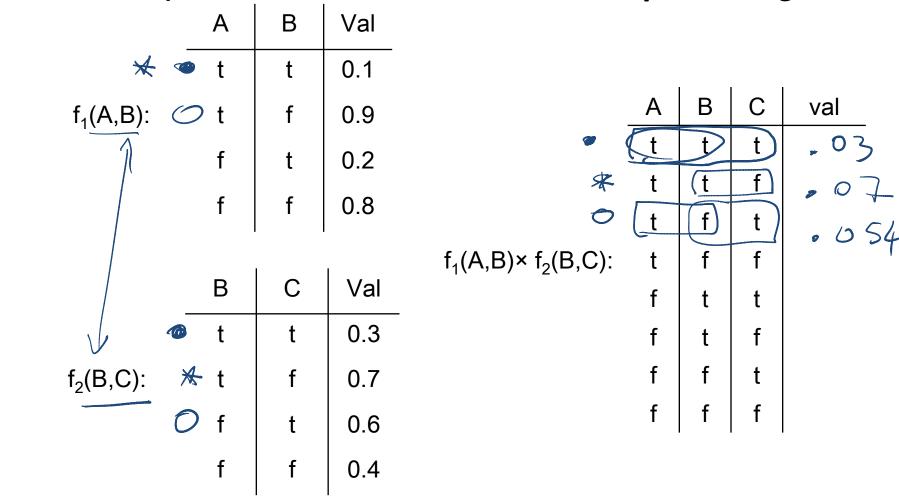
Summing out a variable example

Our second operation: we can *sum out* a variable, say X_1 with domain $\{v_1, ..., v_k\}$, from factor $f(X_1, ..., X_j)$, resulting in a factor on $X_2, ..., X_j$ defined by:



Multiplying factors

•Our third operation: factors can be *multiplied* together.



Multiplying factors

•Our third operation: factors can be *multiplied* together.

	А	В	Val		A	В	С	val
-	t	t	0.1		t	t	t	
f ₁ (A,B):	t	f	0.9		t	t	f	
	f	t	0.2		t	f	t	??
i⊷licker.	f	f	0.8	$f_1(A,B) \times f_2(B,C)$:	t	f	f	
FCIICKEI.					f	t	t	
	В	С	Val		f	t	f	
-	t	t	0.3		f	f	t	
	L		0.5		f	f	f	
f ₂ (B,C):	t	f	0.7		·			
	f	t	0.6	A. 0.32			Β.	0.54
	f	f	0.4	C. 0.24			D.	0.06

Multiplying factors: Formal

•The **product** of factor $f_1(A, B)$ and $f_2(B, C)$, where *B* is the variable in common, is the factor $(f_1 \times f_2)(A, B, C)$ defined by:

Note1: it's defined on all <u>A</u>, <u>B</u>, <u>C</u> triples, obtained by multiplying together the appropriate pair of entries from f_1 and f_2 .

Note2: A, B, C can be sets of variables

Factors Summary

- A factor is a representation of a function from a tuple of random variables into a number.
 - $f(X_1, \ldots, X_j)$.
- We have defined three operations on factors:
 - 1. Assigning one or more variables
 - $f(X_1 = v_1, X_2, ..., X_j)$ is a factor on $X_2, ..., X_j$, also written as $f(X_1, ..., X_j)_{X_1 = v_1}$
 - 2.<u>Summing out</u> variables

•
$$(\sum_{X_1} f)(X_2, \ldots, X_j) = f(X_1 = v_1, X_2, X_j) + \ldots + f(X_1 = v_k, X_2, X_j)$$

3. Multiplying factors

• $f_1(A, B) f_2(B, C) = (f_1 \times f_2)(A, B, C)$

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Intro Variable elimination Algo

Variable Elimination Intro

- Suppose the variables of the belief network are X_1, \dots, X_n . • Z is the query variable
- • $Y_1 = v_1, ..., Y_j = v_j$ are the observed variables (with their values) • $Z_1, ..., Z_k$ are the remaining variables
- What we want to compute: $P(Z | Y_1 = v_1, \dots, Y_j = v_j)$
- We showed before that what we actually need to compute is

$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

This can be computed in terms of **operations between factors** (that satisfy the semantics of probability)

Variable Elimination Intro

• If we express the joint as a factor,

• We can compute $P(Z, Y_1 = v_1, \dots, Y_j = v_j)$ by ??

•assigning
$$Y_1 = v_1, \dots, Y_j = v_j$$

observed

 $f(Z, Y_{1}, Y_{j}, Y_{j})$

•and summing out the variables $Z_1, ..., Z_k$

$$\underbrace{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}_{Z_k} = \underbrace{\sum_{Z_k} \cdots \sum_{Z_1} f(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_j, Z_1, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_k, \dots, Y_k, \dots, Z_k)}_{\text{Hm's is the}} \underbrace{F(Z, Y_1, \dots, Y_k, \dots, Y_k$$

Are we done? V CPSC 322, Lecture 29

Learning Goals for today's class

You can:

- Define factors. Derive new factors from existing factors. Apply operations to factors, including assigning, summing out and multiplying factors.
- (*Minimally*) Carry out variable elimination by using factor representation and using the factor operations. Use techniques to simplify variable elimination.

Next Class

Variable Elimination

- The algorithmAn example

Course Elements

- Work on Practice Exercises 6A and 6B
- Assignment 3 is due on Wed the 20th ! •
- Assignment 4 will be available on Thur and due on Nov the 29th (last class).