Reasoning Under Uncertainty: More on BNets structure and construction

Computer Science cpsc322, Lecture 28

(Textbook Chpt 6.3)

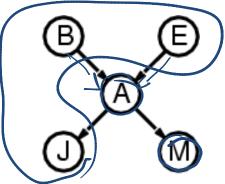
Nov, 15, 2013

///

CPSC 322, Lecture 28

Belief networks Recap

- By considering causal dependencies, we order variables in the joint.
- Apply chain rule and simplify



- P(B, E, A, J, M) = P(B) P(E) P(A|B,E) P(J|A) P(M|A) why M indep(B, E, J) given A P(M, B, E, J, A)
- Build a directed acyclic graph (DAG) in which the parents of each var X are those vars on which X directly depends.
- By construction, a var is independent form it nondescendant given its parents. why?

Belief Networks: open issues

• Independencies: Does a BNet encode more independencies than the ones specified by construction? γ_{es}

y vovs

• **Compactness**: We reduce the number of $\frac{K parents}{too(N 2^{K})}$

In some domains we need to do better than that!

 Still too many and often there are no data/experts for accurate assessment

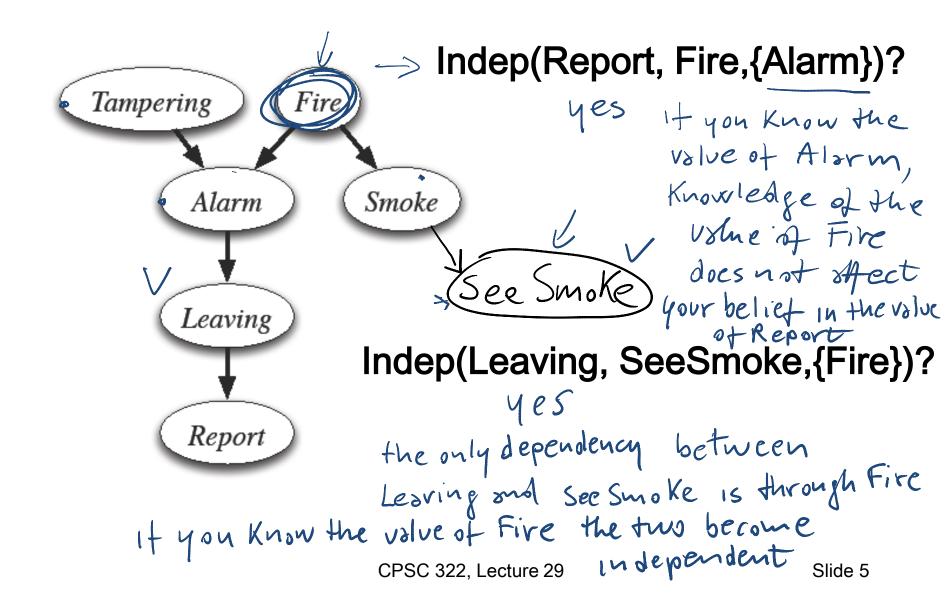
Solution: Make stronger (approximate)

CPSC 322, Lecture 28

Lecture Overview

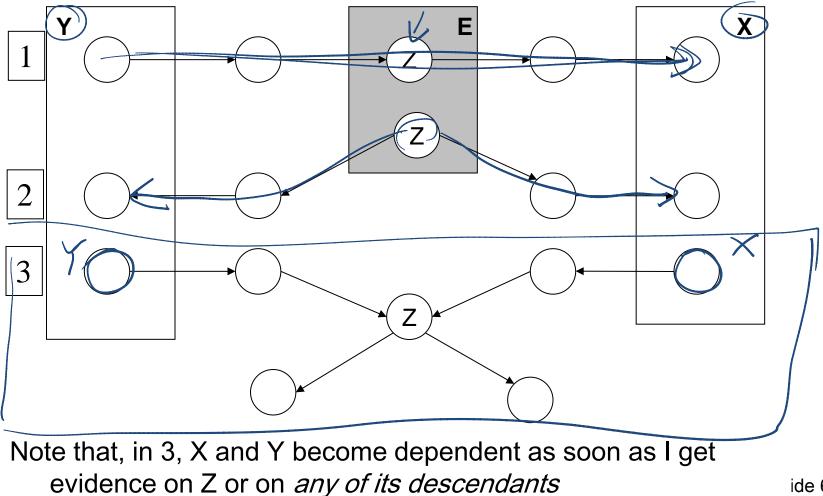
- Implied Conditional Independence relations in a Bnet
- Compactness: Making stronger
 Independence assumptions
 - Representation of Compact Conditional Distributions
 - Network structure(Naïve Bayesian Classifier)

Bnets: Entailed (in)dependencies

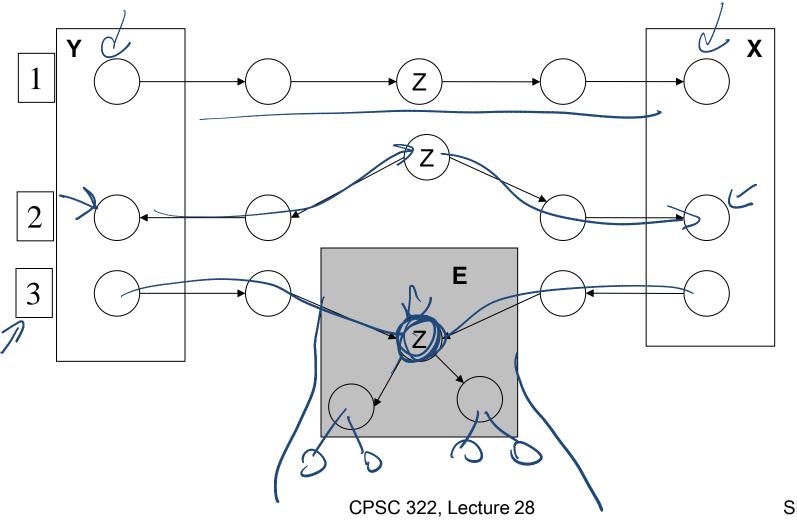


Conditional Independencies

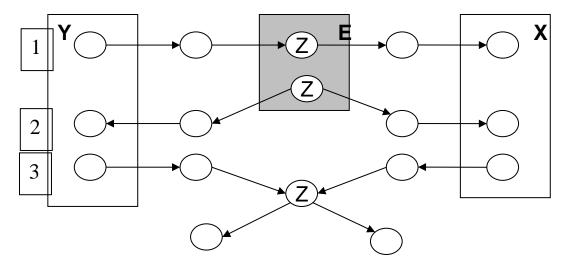
Or, blocking paths for probability propagation. Three ways in which a path between X to Y can be blocked, (1 and 2 given evidence E)

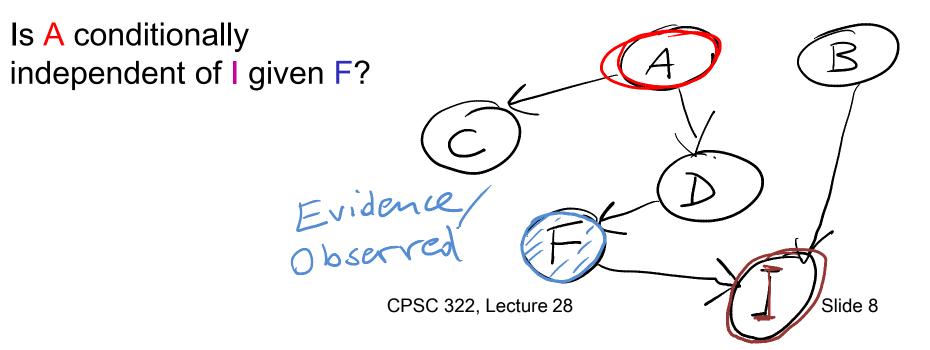


Or Conditional Dependencies In 1,2,3 X Y are dependent

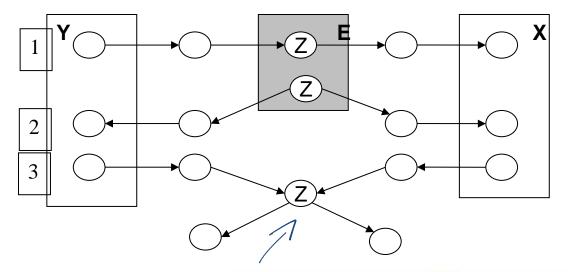


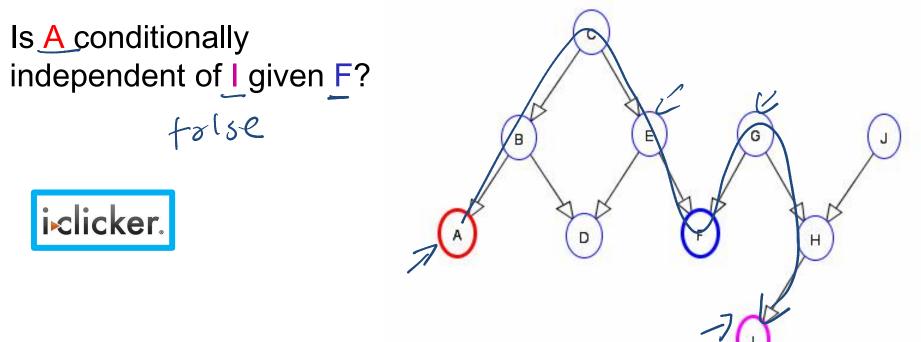
In/Dependencies in a Bnet : Example 1



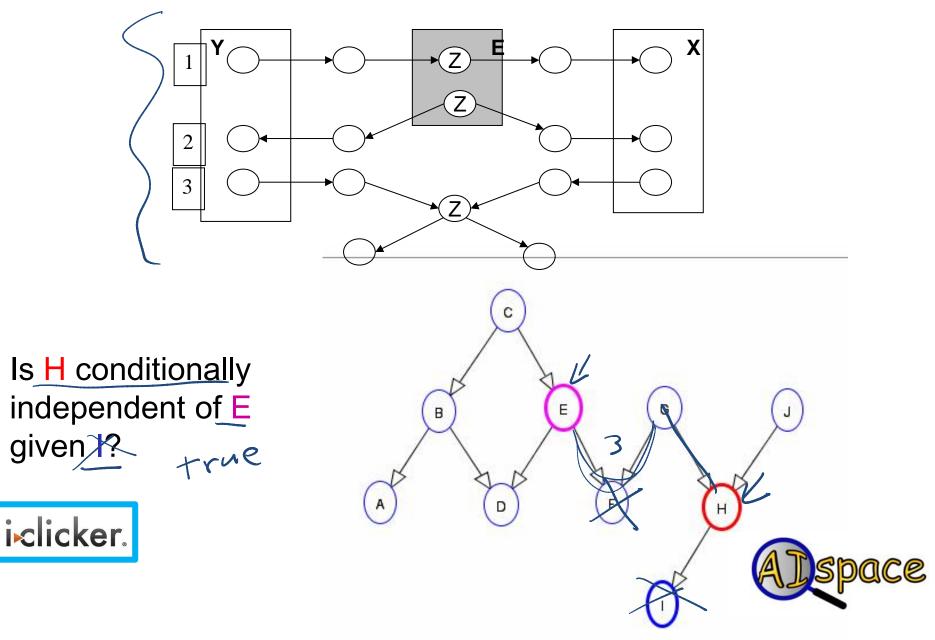


In/Dependencies in a Bnet : Example 2





In/Dependencies in a Bnet : Example 3



Lecture Overview

- Implied Conditional Independence relations in a Bnet
- Compactness: Making stronger
 Independence assumptions
 - Representation of Compact Conditional Distributions
 - Network structure(Naïve Bayesian Classifier)

More on Construction and Compactness: Compact Conditional Distributions

Once we have established the topology of a Bnet, we still need to specify the conditional probabilities How?

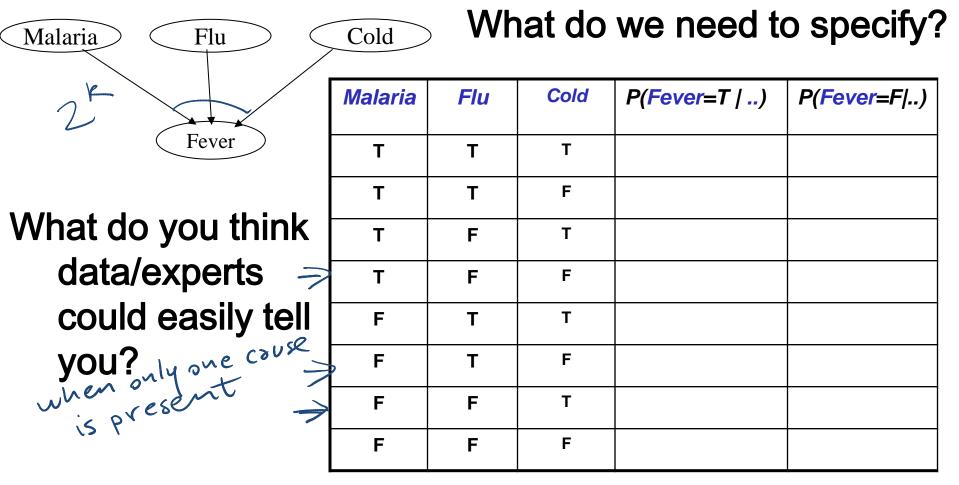
- From Data
- From Experts
- To facilitate acquisition, we aim for compact representations for which data/experts can provide accurate assessments

More on Construction and Compactness: **Compact Conditional Distributions** 47.K **From JointPD**

to

- But still, CPT grows exponentially with number of parents
- In realistic model of internal medicine with 448 nodes and 906 links 133,931,430 values are required!
- And often there are no data/experts for accurate assessment

Effect with multiple non-interacting causes



More difficult to get info to assess more complex conditioning....

CPSC 322, Lecture 28

Solution: Noisy-OR Distributions

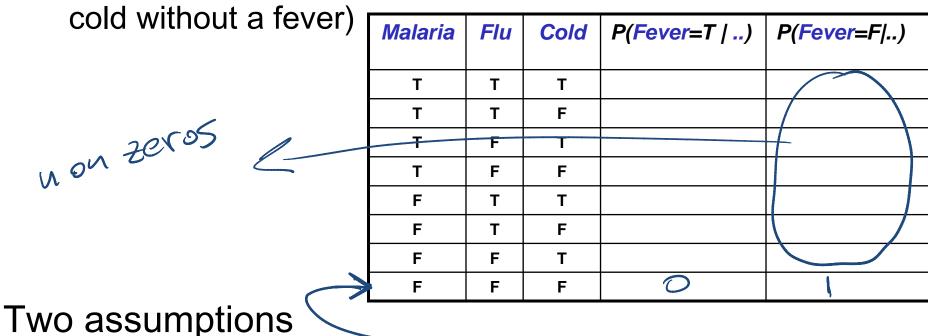
- Models multiple non interacting causes
- Logic OR with a probabilistic twist.
 - Logic OR Conditional Prob. Table.

Malaria	Flu	Cold	P(Fever=T)	P(Fever=F)
Т	т	т	l	0
Т	Т	F	l	0
Т	F	т	1	0
Т	F	F)	0
F	т	т	(0
F	т	F	1	D
F	F	Т	l	0
F	F	F	0	

Solution: Noisy-OR Distributions

The Noisy-OR model allows for uncertainty in the ability of

each cause to generate the effect (e.g., one may have a



- 1. All possible causes a listed
- 2. For each of the causes, whatever inhibits it to generate the target effect is independent from the inhibitors of the other causes

Noisy-OR: Derivations For each of the causes, whatever inhibits it to generate the target effect is independent from the inhibitors of the other causes

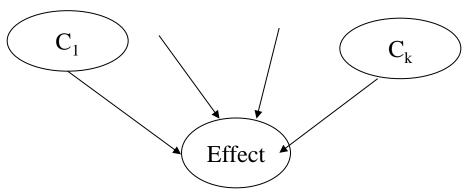
Independent Probability of failure q_i for each cause alone:

- P(Effect=F | C_i = T, and no other causes) = q_i

Slide 17

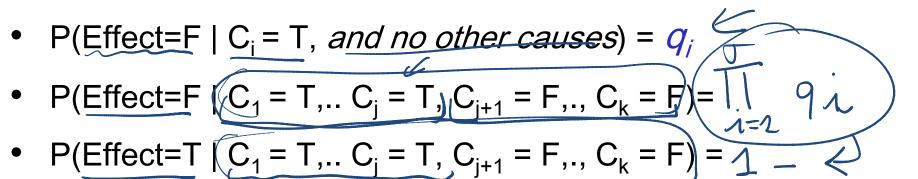
CPSC 322, Lecture 28

Noisy-OR: Derivations



For each of the causes, whatever inhibits it to generate the target effect is independent from the inhibitors of the other causes

Independent Probability of failure q_i for each cause alone:



Noisy-OR: Example

P(Fever=F(Cold=T), Flu=F, Malaria=F) = 0.6Model of internal medicine P(Fever=F| Cold=F, Flu=T, Malaria=F) = 0.2 ,133,931,430, →, 8,254 P(Fever=F| Cold=F, Flu=F, Malaria=T) = 0.1 using Noisy-ORS

P(Effect=F | $C_1 = T, ..., C_i = T, C_{i+1} = F, ..., C_k = F) = \prod_{i=1}^{j} q_i$

91

Malaria	Flu	Cold	P(Fever=T)	P(Fever=F)		
⇒ T	Т	Т	. 988	<u>0.1 x 0.2 x 0.6 = 0.012</u>		
\rightarrow (T)	T	F	-> .98	<u>0.2 × 0.1 = 0.02</u>		
T	F	Т	. 94	0.6 x 0.1 =0.06		
✓	F	F	0.9	0.1 🧲		
F	Т	Т	. 88	0.2 × 0.6 = 0.12		
F	Т	F	0.8	0.2 ←		
F	F	Т	0.4	0.6		
F	F	F	O regr	nived 1.0		
FFFO required1.0• Number of probabilities linear in K3 in this example						

Lecture Overview

- Implied Conditional Independence relations in a Bnet
- Compactness: Making stronger Independence assumptions
 - Representation of Compact
 Conditional Distributions
 - Network structure (Naïve Bayesian Classifier)

Naïve Bayesian Classifier

A very simple and successful Bnets that allow to classify entities in a set of classes C, given a set of attributes

Example:

- Determine whether an email is spam (only two classes spam=T and spam=F)

words contained in the email

Assumptions

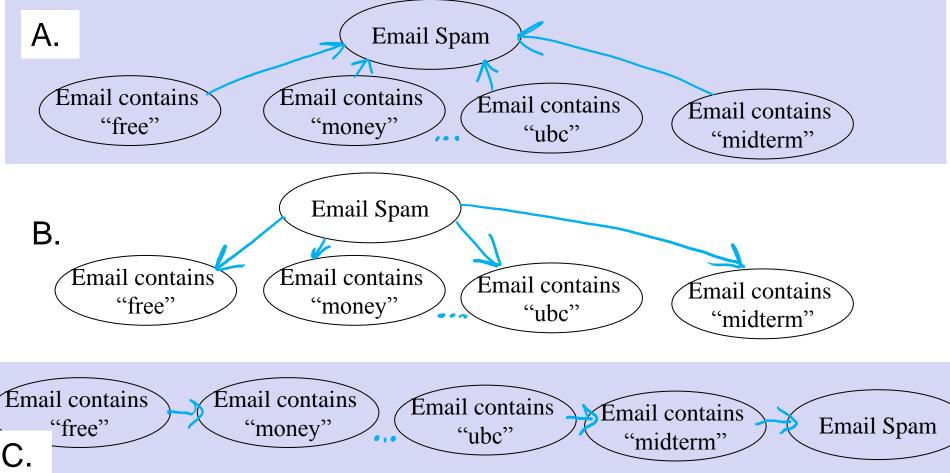
- The value of each attribute depends on the classification
- (Naïve) The attributes are independent of each other given the classification

P("bank" | "account", spam=T) = P("bank" | spam=T)

What is the structure?

Assumptions

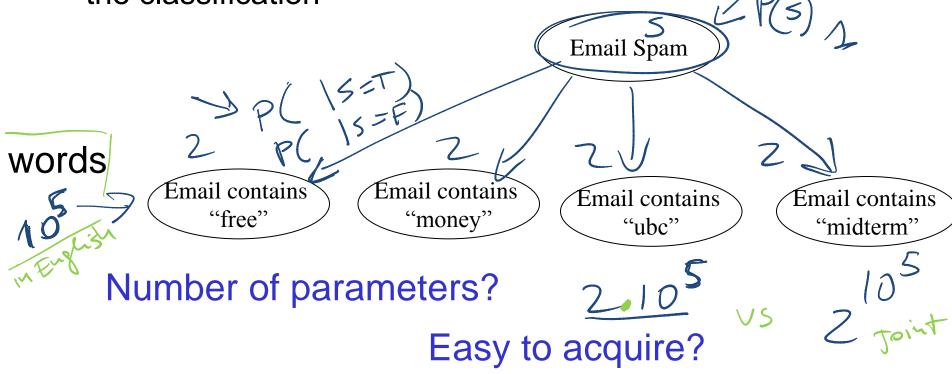
- The value of each attribute depends on the classification
- (Naïve) The attributes are independent of each other given the classification



Naïve Bayesian Classifier for Email Spam

Assumptions

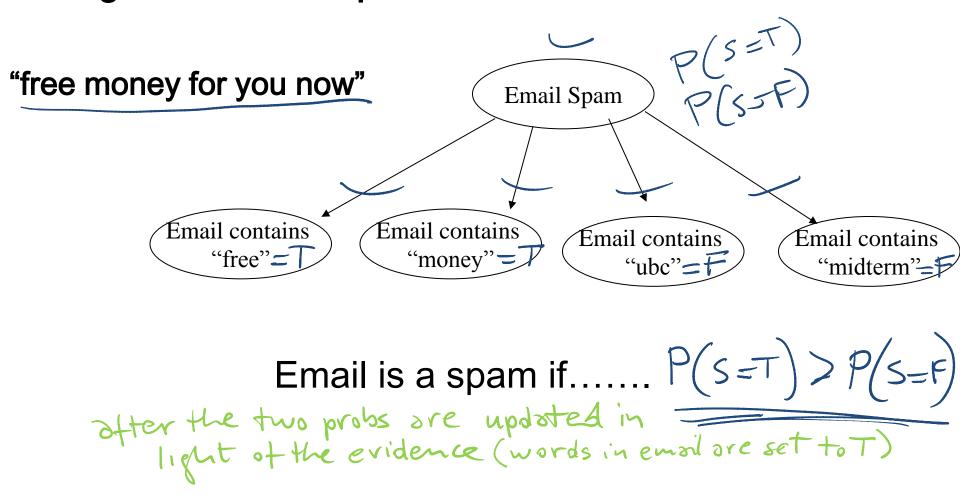
- The value of each attribute depends on the classification
- (Naïve) The attributes are independent of each other given the classification



If you have a large collection of emails for which you know if they are spam or not.....

NB Classifier for Email Spam: Usage

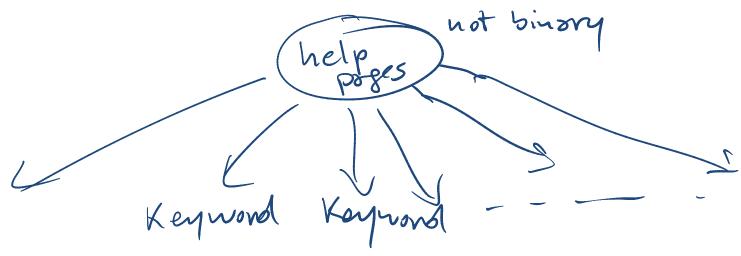
Most likely class given set of observations Is a given Email *E* spam?



For another example of naïve Bayesian Classifier

See textbook ex. 6.16

help system to determine what help page a user is interested in based on the keywords they give in a query to a help system.



Learning Goals for today's class

You can:

 Given a Belief Net, determine whether one variable is conditionally independent of another variable, given a set of observations.

Define and use Noisy-OR distributions.
 Explain assumptions and benefit.

 Implement and use a naïve Bayesian classifier. Explain assumptions and benefit.

Next Class

Bayesian Networks Inference: Variable Elimination

Course Elements

- Work on Practice Exercises 6A and 6B
- Assignment 3 is due on Wed the 20th !
- Assignment 4 will be available on Thur and due on Nov the 29th (last class).