Reasoning Under Uncertainty: Belief Networks

Computer Science cpsc322, Lecture 27 (Textbook Chpt 6.3)

Nov, 13, 2013

CPSC 322, Lecture 26

Slide 1

Big Picture: R&R systems

Key points Recap

- We model the environment as a set of $\underline{X_1}$ was $X_1 \dots X_n$ JPD $P(X_1 \dots X_n)$
- Why the joint is not an adequate representation ?

Solution: Exploit marginal&conditional independence P(X|Y) = P(X) P(X|YZ) = P(X|Z)

But how does independence allow us to simplify the joint?

Lecture Overview

Belief Networks

- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Belief Nets: Burglary Example

There might be a **burglar** in my house

The anti-burglar alarm in my house may go off

I have an agreement with two of my neighbors, John and Mary, that they call me if they hear the alarm go off when I am at work

Minor earthquakes may occur and sometimes the set off the alarm.

Variables: B A M J E = 5Joint has $2^{5}-1$ entries/probs $2^{N}-1$

Belief Nets: Simplify the joint

- Typically order vars to reflect causal knowledge (i.e., causes *before effects*)
 - A burglar (B) can set the alarm (A) off
 - An earthquake (E) can set the alarm (A) off
 - The alarm can cause Mary to call (M)
 - The alarm can cause John to call (J)

• Apply Chain Rule marginal indep-

• Simplify according to marginal&conditional independence

Belief Nets: Structure + Probs $\rightarrow P(B) * P(E) * P(A|B,E) * P(M|A) * P(J|A)$

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional E $P(E)^{c}$ $P(A|B,E)^{c}$ probabilities

A

Lecture Overview

Belief Networks

- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be answered by processing the joint!

(Ex1) I'm at work,

- neighbor John calls to say my alarm is ringing,
 - neighbor Mary doesn't call.
- No news of any earthquakes.
 - Is there a burglar?

(Ex2) I'm at work, Try tus

- Receive message that neighbor John called ,
- News of minor earthquakes.
- Is there a burglar?

Set digital places to monitor to 5

Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can be answered by processing the joint!

(Ex1) I'm at work,

- neighbor John calls to say my alarm is ringing,
- neighbor Mary doesn't call.
- No news of any earthquakes.
- Is there a burglar?

The probability of Burglar will:

- A. Go down
- B. Remain the same
- C. Go up

CPSC 322, Lecture 26

Bayesian Networks – Inference Types

BNnets: Compactness

					_				
P(B=T) P(P(E=T) P	(E=F)	
.001 .999 (Butglary				(E	arthquake)	.002	.998	
1									
				Ε	<i>P(A=T B,E)</i>	<i>P(A</i> =	F B,E)		
				Т	.95		.05		
(Alarm)			Т	F	.94		.06	÷ 4	
				Т	.29		.71		
				F	.001		.999 🧲		
John Calls Mary Calls A P(M=T/A) P(M=F/A)									
					orycans) A	<i>P(M=T A)</i>	P(M=F A)	
Α	<i>P(J=T A)</i>	P(J=F A)				Т	.70	.30	
Т	.90	.10	2		2	F	.01	.99	
F	.05	.95		_					
BNet									
$ TPD = 2^{5} - 1$ $2 + 2 + 4 + 1 + 1 = 10$								1 = 10	
JAM = K - 1						Slide 13			

For *k*<< *n*, this is a substantial improvement,

 the numbers required grow linearly with n vs. O(2ⁿ) for the full joint distribution

BNets: Construction General Semantics

The full joint distribution can be defined as the product of conditional distributions:

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | X_1, \dots, X_{i-1})$$
 (chain rule)

Simplify according to marginal&conditional independence

- Express remaining dependencies as a network
 - Each var is a node
 - For each var, the conditioning vars are its parents
 - Associate to each node corresponding conditional probabilities

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

CPSC 322, Lecture 26

BNets: Construction General Semantics (cont')

$$P(X_1, \ldots, X_n) = \Pi_{i=1} P(X_i | Parents(X_i))$$

n

 Every node is independent from its non-descendants given it parents \bigcirc \bigcirc (\mathbb{O})

Lecture Overview

Belief Networks

- Build sample BN
- Intro Inference, Compactness, Semantics
- More Examples

Other Examples: Fire Diagnosis (textbook Ex. 6.10)

1 mpen

- Suppose you want to diagnose whether there is a fire in a building
- you receive a <u>noisy report</u> about whether everyone is <u>leaving the building</u>.
- if everyone is leaving, this may have been caused by a fire alarm.
- if there is a fire alarm, it may have been caused by a fire or by tampering
- if there is a fire, there may be smoke raising from the bldg.

Alorm

PF

Fire

Other Examples (cont')

- Make sure you explore and understand the Fire Diagnosis example (we'll expand on it to study Decision Networks)
- Electrical Circuit example (textbook ex 6.11)

- Patient's wheezing and coughing example (ex. 6.14)
- Several other examples on

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

Answering Query under Uncertainty

Learning Goals for today's class

You can: Build a Belief Network for a simple domain

Classify the types of inference Diagnostic, Predictive, Intercousal, Mixed

Compute the representational saving in terms on number of probabilities required

Next Class (Wednesday!)

Bayesian Networks Representation

- Additional Dependencies encoded by BNets
- More compact representations for CPT
- Very simple but extremely useful Bnet (Bayes Classifier)

Belief network summary

- A belief network is a directed acyclic graph (DAG) that effectively expresses independence assertions among random variables.
- The parents of a node X are those variables on which X directly depends.
- Consideration of causal dependencies among variables typically help in constructing a Bnet