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| ecture Overview

Recap with Example
— Marginalization

— Conditional Probability
— Chain Rule 2

Bayes' Rule &

Marginal Independence
Conditional Independence @
our most basic and robust form of knowledge
about uncertain environments.



Recap Joint Distribution
K=" H= Hise
*3 binary random vay'éble/s:/léH,S,F)
— H dom(H)={h, —-h} has heart disease, does not have...
— S dom(S)={s, =-s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet



Recap Joint Distribution
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-3 binary random variables: P(H,S,F)

— H dom(H)={h, —h} has heart disease, does not have...
— S dom(S)={s, —s} smokes, does not smoke
— F dom(F)={f, —f} high fat diet, low fat diet
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Recap Marginalization
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Recap Conditional Probability
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Recap Conditional Probability (cont.)

o P(S,H)
P(S|H)= ?(xi-.‘,xw ST/L-.,YO
Q?DJ / j
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Two key points we covered Iin the previous Iectur*e

* We derived this equality from a possible world
semantics of probability

It is not a probability distributions but..?.i”f’ o= | \
/7 Fro'O- 6434'0\0.

* One for each configuration of the conditioning var(sy

2, sihan «
e rntiegun cett 25 prob. faskrlordions




Recap Chain Rule
p(H,5,F)= P(H) & P(s[)* B(F|4;5)
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| ecture Overview

* Recap with Example and Bayes Theorem

 Marginal Independence

« Conditional Independence



Do you always need to revise your beliefs?

NO.. when your knowledge of Y’s value doesn't affect your belief
In the value of X

—_—_—

DEF. Randam variable X is marginal independent of random
variable Y if, for all x; € dom(X), y, € dom(Y),

P(X=X | Y=y, = P(X=X;)




Marginal Independence: Example

- X and Y are independent iff)'\‘?’(x>: (< \\(3 = P%
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[POqv) [P(X) ol P(YX) = PY) o P(X, ) = POX) P(Y)

 That is new evidence Y(or X) does not affect current belief

in X (or Y) Y }dow‘l - scul";l{
 Ex: P(Toothache, Catch, Cavity, Weather) | Ta
= P(Toothache, Catch, Cavity), (we&&r) 1
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In our example are Smoking and Heart Disease
marginally Independent ?

What our probabilities are telling us....?
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| ecture Overview

* Recap with Example
* Marginal Independence
« Conditional Independence



Conditional Independence

With marg. Independence, for n independent
‘random vars, O(2") — O{v\

Clx<a .. - S (é(i - 5((3(&>

Absolute independence is powerful but when you

Dentlstry IS a Iarge field Wlth hundreds of
variables, few of which are independent
(e.g.,Cavity, Heart-disease).

What to do?



Look for weaker form of independence,

P(Toothache, Cavity, Catch)
Ceotdn

Are Toothache and/Catch marginally independent?
f\DC\\/ / v > = O@O%aﬂhq > K}MO

BUT If (have a cavity, does the probability that the probe
catches depend on whether | have a toothache? NO

(1) P(catch | toothache, cavity) = P(cstcl | cawt
(catch | toothache, cavity

What if | haven't got a cavity?
(2) P(catch | toothache,—cavity) = Pcatcly \ L Cmﬂ\

» Each is directly caused by the cavity, but neither
has a direct effect on the other




Conditional independence

* In general, Catch is conditionally independent of Toothache

given Cavity>

(1) P(Catch | Toothache,Cavity) = P(Catch | Cavity) =

« Equivalent statements:
@ P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

@ P(Toothache, Catch | Cavity) =
P(Toothache | Cavity) P(Catch | Cavity)
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Proof of equivalent statements
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Conditional Independence: Formal Def.

Sometimes, two variables might not be marginally
Independent. However, they become independent
after we observe some third variable

DEF. Random variable X is conditionally independent of
random variable Y given random variable Z if, for all
X; € dom(X), y, € dom(Y), z,, € dom(Z)
P(X=Xi| Y=Yy, Z=2,) =P(X=x [ Z=2,,)
That is, knowledge of Y's value doesn’t affect your
belief in the value of X, given a value of Z



Conditional independence: Use

« Write out full joint distribution using chain rule:

( P(Cavity, Catch, '[g,oihach@
= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

—7

:LP(Toothache | car\mk—v! Aﬁ’f(ig}\tch | Cavityb P(Cavity)

< . 2 1
how many probabilities? 27 -1= v
2 +24+1 =5

« The use of conditional independence often reduces the size of
the representation of the joint distribution from exponential in n
to linear in n. What is n? % o vars

« Conditional independence is our most basic and robus%
form of knowledge about uncertain environments.



Conditional Independence Example 2

« Given whether there is/isn’t power in wire w0, is °
whether light |1 is lit or not, independent of the

position of switch s2?
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Conditional Independence Example 3

 |s every other variable in the system independent’
of whether light 11 is lit, given whether there Is
power in wire wO ?




Learning Goals for today’s class

YOou can:
Derive the Bayes Rule

Define and use Marginal Independence

Define and use Conditional Independence

CPSC 322, Lecture 4 Slide 22



Where are we? (Summary)
Probabillity is a rigorous formalism for uncertain
knowledge

/=
Joint probabillity distribution specifies probability of
every possible world

Queries can be answered by summing over
possible worlds

For nontrivial domains, we must find a way to
reduce the joint distribution size

Independence (rare) and conditional ="
Independence (frequent) provide the tools



Next Class

« Bayesian Networks (Chpt 6.3)

Start working on assignments3 !



