Marginal Independence and Conditional Independence

Computer Science cpsc322, Lecture 26

(Textbook Chpt 6.1-2)

Nov, 2013
Lecture Overview

• Recap with Example
 – Marginalization
 – Conditional Probability
 – Chain Rule

• Bayes’ Rule

• Marginal Independence
• Conditional Independence

our most basic and robust form of knowledge about uncertain environments.
Recap Joint Distribution

3 binary random variables: \(P(H, S, F) \)

- \(H \) \(\text{dom}(H) = \{h, \neg h\} \) has heart disease, does not have...
- \(S \) \(\text{dom}(S) = \{s, \neg s\} \) smokes, does not smoke
- \(F \) \(\text{dom}(F) = \{f, \neg f\} \) high fat diet, low fat diet
Recap Joint Distribution

Joint Prob. Distribution (JPD)

- 3 binary random variables: \(P(H, S, F) \)
 - \(H \) \(\text{dom}(H) = \{h, \neg h\} \): has heart disease, does not have...
 - \(S \) \(\text{dom}(S) = \{s, \neg s\} \): smokes, does not smoke
 - \(F \) \(\text{dom}(F) = \{f, \neg f\} \): high fat diet, low fat diet

\[
\begin{array}{c|c|c}
\text{f} & s & \neg s \\
\hline
\text{s} & .015 & .007 \\
\text{\neg s} & .21 & .51 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{\neg f} & s & \neg s \\
\hline
\text{s} & .005 & .003 \\
\text{\neg s} & .07 & .18 \\
\end{array}
\]

\(2^3 - 1 \) \hspace{1cm} \(2^K - 1 \)
Recap Marginalization

\[P(H, S) = \sum_{x \in \text{dom}(F)} P(H, S, F = x) \]

\[P(H, S) \]

\[P(H) \]

\[P(S) \]

\[\begin{array}{cc|cc}
 f & \neg f \\
 \hline
 s & \neg s & 0.015 & 0.007 \\
 \hline
 \neg s & \neg s & 0.005 & 0.003 \\
\end{array} \]
Recap Conditional Probability

\[
P(S \mid H) = \frac{P(S, H)}{P(H)}
\]

<table>
<thead>
<tr>
<th></th>
<th>(s)</th>
<th>(\neg s)</th>
<th>(P(H))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td>.02</td>
<td>.01</td>
<td>.03</td>
</tr>
<tr>
<td>(\neg h)</td>
<td>.28</td>
<td>.69</td>
<td>.97</td>
</tr>
</tbody>
</table>

| \(P(S)\) | .30 | .70 |

\[
P(S \mid \neg h) = \frac{P(S, \neg h)}{P(\neg h)}
\]

<table>
<thead>
<tr>
<th></th>
<th>(s)</th>
<th>(\neg s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td>.666</td>
<td>.333</td>
</tr>
<tr>
<td>(\neg h)</td>
<td>.29</td>
<td>.71</td>
</tr>
</tbody>
</table>

Two probability distributions for \(S\)

\[P(H \mid S) = \frac{P(H, S)}{P(S)}\]

Do this as an exercise
Recap Conditional Probability (cont.)

\[P(S \mid H) = \frac{P(S, H)}{P(H)} \]

Two key points we covered in the previous lecture:

- We derived this equality from a possible world semantics of probability.
- It is not a probability distribution but...
- One for each configuration of the conditioning var(s).

If conditioned by \(k \) binary vars, set \(2^k \) prob. distributions.
Recap Chain Rule

\[P(H, S, F) = P(H) \cdot P(S | H) \cdot P(F | H, S) \]

Bayes Theorem

\[P(S | H) = \frac{P(S, H)}{P(H)} \]

\[P(H | S) = \frac{P(S, H)}{P(S)} \]

Substitute

\[P(H | S) \cdot P(S) = P(S, H) \]
Lecture Overview

• Recap with Example and Bayes Theorem
• **Marginal Independence**
• Conditional Independence
Do you always need to revise your beliefs?

No. when your knowledge of \(Y \)'s value doesn't affect your belief in the value of \(X \)

DEF. Random variable \(X \) is **marginal independent** of random variable \(Y \) if, for all \(x_i \in \text{dom}(X), y_k \in \text{dom}(Y), \)

\[
P(X= x_i \mid Y= y_k) = P(X= x_i)
\]
Marginal Independence: Example

- X and Y are independent iff:
 \[P(X) = P(X|Y) = \frac{P(X,Y)}{P(Y)} \]
 or
 \[P(Y) = P(Y|X) = \frac{P(X,Y)}{P(X)} \]
 or
 \[P(X,Y) = P(X)P(Y) \]

- That is new evidence Y (or X) does not affect current belief in X (or Y)

- Ex:
 \[P(\text{Toothache, Catch, Cavity, Weather}) = P(\text{Toothache, Catch, Cavity}) \]
 \[\cdot P(\text{weather}) \]

- JPD requiring 32 entries is reduced to two smaller ones (8 and 4)
In our example are Smoking and Heart Disease marginally Independent?

What our probabilities are telling us....?

\[
\begin{array}{c|cc}
P(H,S) & s & \neg s \\
\hline
h & .02 & .01 \\
\neg h & .28 & .69 \\
\end{array}
\]

\[
P(H) = \begin{cases}
.03 \\
.97
\end{cases}
\]

\[
P(S|H) = \begin{cases}
.666 \\
.334
\end{cases}
\]

\[
P(S) = \begin{cases}
.30 \\
.70
\end{cases}
\]

\[P(S|H) = P(S) \Rightarrow \text{No.}\]
Lecture Overview

• Recap with Example
• Marginal Independence
• Conditional Independence
Conditional Independence

- With marg. Independence, for n independent random vars, $O(2^n) \rightarrow O(n)$

$$P(x_1, \ldots, x_n) = P(x_1) \times \ldots \times P(x_n)$$

- Absolute independence is powerful but when you model a particular domain, it is rare.

- Dentistry is a large field with hundreds of variables, few of which are independent (e.g., Cavity, Heart-disease).

- What to do?
Look for weaker form of independence

- $P(\text{Toothache, Cavity, Catch})$

- Are Toothache and Catch marginally independent?
 $P\left(\text{catch} \mid \text{toothache, cavity}\right) = P(\text{Toothache})$? NO

- BUT If I have a cavity, does the probability that the probe catches depend on whether I have a toothache?
 (1) $P(\text{catch} \mid \text{toothache, cavity}) = P(\text{catch} \mid \text{cavity})$ NO

- What if I haven't got a cavity?
 (2) $P(\text{catch} \mid \text{toothache, } \neg \text{cavity}) = P(\text{catch} \mid \neg \text{cavity})$

- Each is directly caused by the cavity, but neither has a direct effect on the other
Conditional independence

• In general, Catch is conditionally independent of Toothache given Cavity:

1. \(P(\text{Catch} \mid \text{Toothache}, \text{Cavity}) = P(\text{Catch} \mid \text{Cavity}) \)

• Equivalent statements:

2. \(P(\text{Toothache} \mid \text{Catch}, \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) \)

3. \(P(\text{Toothache}, \text{Catch} \mid \text{Cavity}) = P(\text{Toothache} \mid \text{Cavity}) P(\text{Catch} \mid \text{Cavity}) \)

\[P(x, y) = P(x) P(y) \]
Proof of equivalent statements

\[P(X \mid Y, Z) = P(X \mid Z) \implies \]

\[\frac{P(X, Y, Z)}{P(Y, Z)} = \frac{P(X, Z)}{P(Z)} \implies \]

\[P(Y \mid X, Z) = P(Y \mid Z) \]

\[P(X, Y \mid Z) = \frac{P(X, Y, Z)}{P(Z)} = \frac{P(X, Z)}{P(Z)} \]

\[= \frac{P(Y, Z)}{P(Z)} \cdot \frac{P(X, Z)}{P(Z)} = P(Y \mid Z) \cdot P(X \mid Z) \]
Conditional Independence: Formal Def.

Sometimes, two variables might not be marginally independent. However, they become independent after we observe some third variable.

DEF. Random variable X is conditionally independent of random variable Y given random variable Z if, for all $x_i \in \text{dom}(X)$, $y_k \in \text{dom}(Y)$, $z_m \in \text{dom}(Z)$

$$P(X= x_i \mid Y= y_k , Z= z_m) = P(X= x_i \mid Z= z_m)$$

That is, knowledge of Y's value doesn't affect your belief in the value of X, given a value of Z.
Conditional independence: Use

- Write out full joint distribution using **chain rule**:

\[
P(Cavity, Catch, Toothache) = P(Toothache | Catch, Cavity) \cdot P(Catch | Cavity) \cdot P(Cavity)
\]

\[
= P(Toothache | Catch) \cdot P(Catch | Cavity) \cdot P(Cavity)
\]

\[
= P(Toothache | Cavity) \cdot P(Catch | Cavity) \cdot P(Cavity)
\]

- The use of conditional independence often reduces the size of the representation of the joint distribution from exponential in \(n\) to linear in \(n\). What is \(n\)?

\[
\text{# of vars} = \frac{2^3 - 1}{2 - 1} + 2 + 1 = 5
\]

- **Conditional independence** is our most basic and robust form of **knowledge** about uncertain environments.
Conditional Independence Example 2

- Given whether there is/isn’t power in wire w_0, is whether light l_1 is lit or not, independent of the position of switch s_2?

\[P(l_1 | s_2, w_0) = P(l_1 | w_0) \]

- yes!
Conditional Independence Example 3

- Is every other variable in the system independent of whether light l_1 is lit, given whether there is power in wire w_0?

\[P(s_1 | l_1, w_0) = P(s_1 | w_0) \]

w_1

w_2

... w_2

... w_2

\[\text{yes!} \]
Learning Goals for today’s class

• You can:
• Derive the Bayes Rule

• Define and use Marginal Independence
• Define and use Conditional Independence
Where are we? (Summary)

- Probability is a rigorous formalism for uncertain knowledge

- Joint probability distribution specifies probability of every possible world

- Queries can be answered by summing over possible worlds

- For nontrivial domains, we must find a way to reduce the joint distribution size

- Independence \((rare)\) and conditional independence \((frequent)\) provide the tools
Next Class

- Bayesian Networks (Chpt 6.3)

Start working on assignments!