Finish Logics...

Reasoning under Uncertainty: Intro to Probability

Computer Science cpsc322, Lecture 24

(Textbook Chpt 6.1, 6.1.1)

Nov, 4, 2013

Tracing Datalog proofs in Alspace

 You can trace the example from the last slide in the Alspace Deduction Applet at http://aispace.org/deduction/ using file ex-Datalog available in course schedule

Question 4 of assignment 3 asks you to use this applet

Datalog: queries with variables

```
in(alan, r123).

part_of(r123,cs_building).

in(X,Y) \leftarrow part_of(Z,Y) & in(X,Z).
```

```
Query: in(alan, X1).

yes(X1) \leftarrow in(alan, X1).
```

What would the answer(s) be?

Datalog: queries with variables

```
in(alan, r123).

part_of(r123,cs_building).

in(X,Y) \leftarrow part_of(Z,Y) & in(X,Z).
```

```
Query: in(alan, X1).

yes(X1) \leftarrow in(alan, X1).
```

What would the answer(s) be?

```
yes(r123).
yes(cs_building).
```

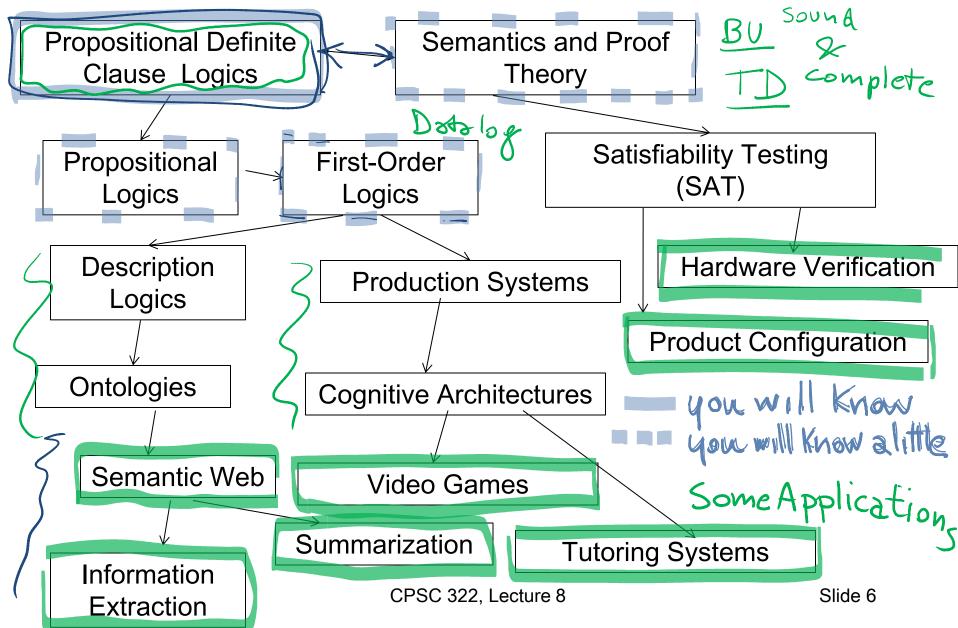
Again, you can trace the SLD derivation for this query in the AIspace Deduction Applet

To complete your Learning about Logics

Review textbook and inked slides Practice Exercises: 5.A, 12.A, 12.B, 12.C Assignment 3

- It will be out on Wed. It is due on the 20th. Make sure you start working on it soon.
- One question requires you to use Datalog (with TopDown proof) in the Alspace.
- To become familiar with this applet download and play with the simple examples we saw in class (available at course webPage) and work on the Practice Exercises

Logics in AI: Similar slide to the one for planning



Paper just published in Al journal from Oxford

Towards more expressive ontology languages: The query answering problem *

Andrea Cali'c, b, Georg Gottloba, b, Andreas Pierisa,

- ^a Department of Computer Science, University of Oxford, UK
- ^b Oxford-Man Institute of Quantitative Finance, University of Oxford, UK
- ^c Department of Computer Science and Information Systems, Birkbeck University of London, UK

Abstract

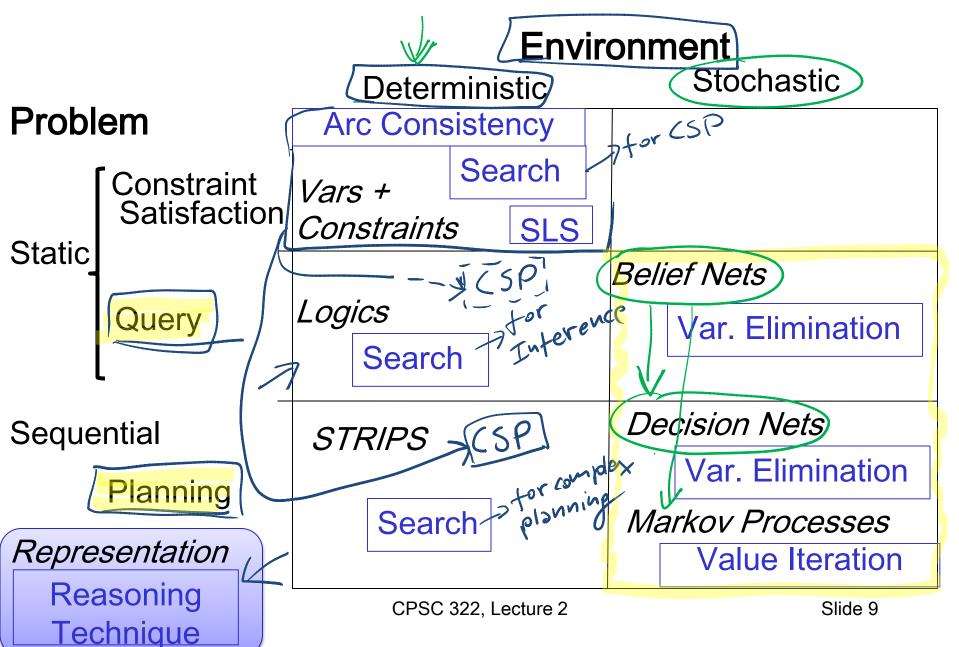
entailed by the extensional database EDB and the ontology.In particular, our new classes belong to the recently introduced family of Datalog-based languages, called Datalog[±]. The basic Datalog[±] rules are (function-free) Horn rules extended with existential quantification in the head, known as *tuple-generating dependencies* (TGDs). We establish complexity results for answering conjunctive queries under sticky sets of TGDs, showing, in particular, that queries can be compiled into domain independent first-order (and thus translatable into SQL) queries over the given EDB.

Lecture Overview

- Big Transition
- Intro to Probability

•

Big Picture: R&R systems



Answering Query under Uncertainty Probability Theory 2Ko Belief Nets **Dynamic Bayesian** Network Static Bayesian Network & Variable Elimination Hidden Markov Models Student Tracing in Monitoring (e.g credit cards) **Tutoring Systems** you will know a little **Natural** Language **Processing** Diagnostic Some Application Systems (e.g., medicine) Email spam filters Slide 10 CPSC 322. Lecture 18

Intro to Probability (Motivation)

- Will it rain in 10 days? Was it raining 198 days ago?
- Right now, how many people are in this room? in this building (DMP)? At UBC? Yesterday?
- Al agents (and humans ③) are not omniscient (Know everything)

 they are ignorant
- And the problem is not only predicting the future or "remembering" the past

Intro to Probability (Key points)

• Are agents all ignorant/uncertain to the same degree? No subjective

- Should an agent act only when it is certain about relevant knowledge?
- (not acting usually has implications)

 So agents need to represent and reason about their ignorance/ uncertainty

Probability as a formal measure of uncertainty/ignorance

- Belief in a proposition f (e.g., it is raining outside, there are 31 people in this room) can be measured in terms of a number between 0 and 1 this is the probability of f
 - The probability fis 0 means that fis believed to be definitely talse
 - The probability fis 1 means that fis believed to be definitely true
 - Using 0 and 1 is purely a convention.

Random Variables

- A random variable is a variable like the ones we have seen in <u>CSP</u> and <u>Planning</u>, but the agent can be uncertain about its value.
- As usual
 - The domain of a random variable X, written dom(X), is the set of values X can take
 - values are mutually exclusive and exhaustive

Examples (Boolean and discrete)

Random Variables (cont')

• A tuple of random variables $\langle X_1, ..., X_n \rangle$ is a complex random variable with domain..

Assignment X=x means X has value x

 A <u>proposition</u> is a <u>Boolean formula made</u> from assignments of values to variables

Possible Worlds

 A possible world specifies an assignment to each random variable

E.g., if we model only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct possible worlds:

$$W_{2}$$
 Cavity = $T \land Toothache = T$
 w_{2} Cavity = $T \land Toothache = F$
 w_{3} Cavity = $F \land Toothache = T$
 w_{4} Cavity = $T \land Toothache = T$

cavity	toothache
Т	Т
Т	F
F	Т
F	F

As usual, possible worlds are mutually exclusive and exhaustive

 $w \not\models X = x$ means variable X is assigned value x in world w

Wz F Conty F

W4 / Toothoche=F

Semantics of Probability

- The belief of being in each possible world w can be expressed as a probability $\mu(w)$
- For sure, I must be in one of them.....so

 $\mu(w)$ for possible worlds generated by three Boolean variables: cavity, toothache, catch (the probe caches in the tooth)

				_
cavity	toothache	catch	$\mu(w)$	
Т	Т	Т	.108	$\backslash \sim$
Т	Т	F	.012	
Т	F	Т	.072	
Т	F	F	.008	
F	Т	Т	.016	
F	Т	F	.064	/
F	F	Т	.144	
F	F	F	.576	

Slide 17

Probability of proposition equivalent, only of only of the probability of a proposition f?

What is the probability of a proposition f?

cavity	toothache	catch	$\mu(w)$
Т	T	Т	.108
Т	T	F	.012
\ T	F	T	.072
	F	F	.008
F	/ T	Т	.016
F	(T (F	.064
F	F	T	.144
F	F	F	.576

		\(\frac{1}{2}\)	•	4	
	toot	thache	¬ too	thache	
	catch	¬ catch	catch	¬ catch	
cavity	.108	.012	.072	.008	
¬ cavity	.016	.064	.144	.576	
P(tothode=F)=.8					

For any f sum the prob. of the worlds where it is true:

$$P(f) = \sum_{w \neq f} \mu(w)$$

Ex:
$$P(toothache = T) = .2$$

Probability of proposition

What is the probability of a proposition f?

cavity	toothache	catch	μ(w)
T		T	 108
T	T	F	.012
Т	F	Т /	.072
Т	F	F	.008
F	T	T	.0 16
F	T	F	064
	F	T	.144
	F	F	.576

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012 🥠	.072	.008
¬ cavity	.016	.064	.144	.576

For any f, sum the prob. of the worlds where it is true:

$$P(f)=\sum_{w \neq f} \mu(w)$$

Probability of proposition

What is the probability of a proposition f?

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	Т	Т	.016
F	Т	F	.064
F	F	T	.144
F	F	F	.576

	toothache		¬ toothache	
	catch ¬ catch		catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any *f*, sum the prob. of the worlds where it is true:

$$P(f)=\sum_{w \neq f} \mu(w)$$

One more example

- Weather, with domain (sunny, cloudy)
- *Temperature*, with domain {hot, mild, cold}
- There are now 6 possible worlds:
- What's the probability of it being cloudy or cold?

A. 1 B. 0.3

C. 0.6 D. 0.7

F		
Weather	Temperature	μ(w)
sunny	hot	0.10
sunny	mild	0.20
sunny	cold	0.10
cloudy	hot	0.05
cloudy	mild	0.35
cloudy	cold	0.20

Remember

- The probability of proposition f is defined by: $P(f) = \sum_{w \in f} \mu(w)$
- sum of the probabilities of the worlds w in which f is true

One more example

- Weather, with domain {sunny, cloudy)
- Temperature, with domain {hot, mild, cold}
 - There are now 6 possible worlds:
 - What's the probability of it being cloudy or cold?
 - $\mu(w3) + \mu(w4) + \mu(w5) + \mu(w6) = 0.7$

	Weather	Temperature	μ(w)
w1	sunny	hot	0.10
w2	sunny	mild	0.20
w3	sunny	cold	0.10
w4	cloudy	hot	0.05
w5	cloudy	mild	0.35
w6	cloudy	cold	0.20

Remember

- The probability of proposition f is defined by: $P(f) = \sum_{w \nmid f} \mu(w)$
- sum of the probabilities of the worlds w in which f is true

Probability Distributions

• A probability distribution P on a random variable X is a function dom(X) - > [0,1] such that

is a function
$$dom(X) - > [0,1]$$
, such that $x - > P(X=x)$ dom (cavity) = $[T, F]$

cavity? T -> .2 P(covity=T) X F -> .8 P(covity=F)

¬ cavity	.016	.064	.144	.576	. 8
cavity	.108	.012	.072	.008	.2
	catch	¬ catch	catch	¬ catch	
	toot	hache	¬ too	thache	
<u> </u>			1		1

cavity	toothache	catch	μ(w)
Т	Т	Т	.108
Т	Т	F	.012
Т	F	Т	.072
Т	F	F	.008
F	T	T	.016
E	T	F	.064
F	F	T	.144
F	Г	F	.5 76

CPSC 322, Lecture 24

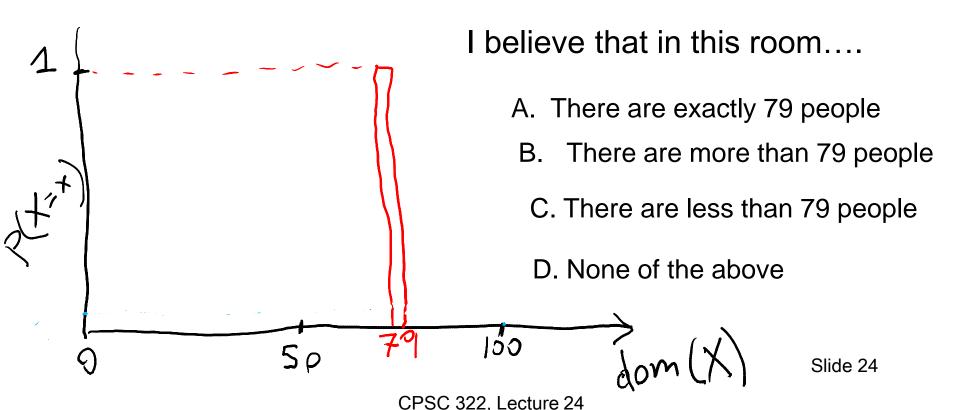
Slide 23

Probability distribution (non binary)

• A probability distribution P on a random variable X is a function dom(X) - > [0,1] such that

$$x \rightarrow P(X=x)$$

Number of people in this room at this time

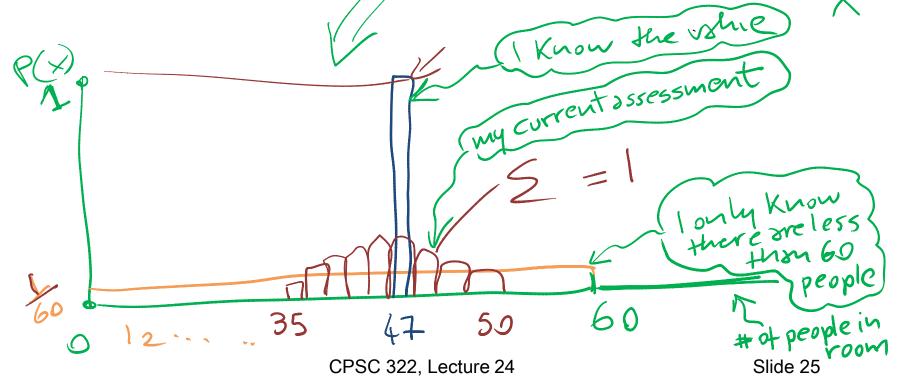


Probability distribution (non binary)

 A probability distribution P on a random variable X is a function dom(X) - > [0,1] such that

$$x \rightarrow P(X=x)$$
 Such that distributions $x \rightarrow P(X=x)$ expressing 3 very aftered

Number of people in this room at this time beliefs about



Joint Probability Distributions

- When we have <u>multiple random variables</u>, their joint distribution is a probability distribution over the variable Cartesian product
 - E.g., $P(\langle X_1, ..., X_n \rangle)$
 - Think of a joint distribution over n variables as an ndimensional table
 - Each entry, indexed by $X_1 = x_1,, X_n = x_n$ corresponds to $P(X_1 = x_1 \land \land X_n = x_n)$
 - The sum of entries across the whole table is 1

		toothache		¬ toothache		
		catch	¬ catch	catch	¬ catch	4
7	cavity	.108	.012	.072	.008	
1	¬ cavity	.016	.064	.144	.576	<u>2</u> 4

Question

If you have the joint of n variables. Can you compute the probability distribution for each variable?

yes you can compute the prob. of my proposition in

Learning Goals for today's class

You can:

 Define and give examples of random variables, their domains and probability distributions.

• Calculate the probability of a proposition f given $\mu(w)$ for the set of possible worlds.

Define a joint probability distribution

Next Class

More probability theory

- Marginalization
- Conditional Probability
- Chain Rule
- Bayes' Rule
- Independence

Assignment-3: Logics – out on Wed