Department of Computer Science Undergraduate Events More details @ <u>https://www.cs.ubc.ca/students/undergrad/life/upcoming-events</u>

CS Co-op Q&A Session

Date:Thurs., Oct 24Time:1-2 pmLocation:Reboot Cafe

CSSS Movie Night: Gravity

Date:	Fri., Oct 25
Time:	~ 7:45 pm
Location:	Scotiabank Theatre

Mastering LinkedIn Workshop

Date:	Mon., Oct 28
Time:	5:00 pm
Location:	Wesbrook 100

Graduate Recruitment Panel

Date:	Wed., Oct 30
Time:	12:30 – 1:30 pm
Location:	X836, ICICS/CS

CSSS Meet the Profs Luncheon

Date:	Thurs., Oct 31
Time:	12:30 – 2 pm
Location:	X836, ICICS/CS

(finish Planning)

Propositional Logic Intro, Syntax

Computer Science cpsc322, Lecture 19

(Textbook Chpt 5.1-5.1.1 – 5.2)

Oct, 21, 2013

CPSC 322, Lecture 19

Lecture Overview

- Recap Planning
- Logic Intro

 Propositional Definite Clause Logic: Syntax

Recap Planning

- Represent possible actions with STR UPS
- Plan can be found by Serrch
- Or can be found by <u>mapping planning</u> problem into... $(\leq S P)$

Solve planning as CSP: pseudo code

Planning as CSP

If the algorithm for planning as CSP stops and returns a solution plan of length k, does it mean that there are no shorter solutions ?

C. It depends ...

STRIPS to CSP applet

Allows you:

- to specify a planning problem in STRIPS
- to map it into a CSP for a given horizon 🚄
- the CSP translation is automatically loaded into the CSP applet where it can be solved

Practice exercise using STRIPS to CSP is available on Alspace

Now, do you know how to implement a planner for....

- Emergency Evacuation?
- Robotics?
- Space Exploration?
- Manufacturing Analysis?
- Games (e.g., Bridge)?
- Generating Natural language <
 - Product Recommendations

Lecture Overview

- Recap Planning
- Logic Intro

 Propositional Definite Clause Logic: Syntax

What is coming next?

Logics

- Mostly only propositional.... This is the starting point for more complex ones
- Natural to express knowledge about the world
 - What is true (boolean variables)
 - How it works (logical formulas)
- Well understood formal properties
- Boolean nature can be exploited for efficiency

Logics in AI: Similar slide to the one for planning

What you already know about logic...

From programming: Some logical operators

Logic is the language of Mathematics. To define formal structures (e.g., sets, graphs) and to proof statements about those

We are going to look at Logic as a **Representation and Reasoning System** that can be used to **formalize a domain (e.g., an electrical system, an organization)** and to **reason about it** CPSC 322, Lecture 20 Slide 14

Logic: A general framework for representation & reasoning

- Let's now think about how to represent an environment about which we have only partial (but certain) information
- What do we need to represent?

objects

events

schons

Why Logics?

/ Tollows-advice (Z, Slide 23)

=> pass(m1,Z)

Vz Student (Z) ~ Registred (Z, C,)

 "Natural" to express knowledge about the world (more natural than a "flat" set of variables & constraints) "Every 322 student will pass the midterm"

Midterm (m1) Course (C1) Name-of (C1, 322) Course-of (M1, C1)

It is easy to incrementally add knowledge

- It is easy to check and debug knowledge
- Provide language for asking complex queries
 Well understood formal properties

Complex Query

"will Sue pass all her midterms?" Hc, m registred (Sue, c) A course-of (m, c) ? pass(m, Sue)

Propositional Logic

We will study the simplest form of Logic: Propositional

- The primitive elements are **propositions**: Boolean variables that can be $\{true, false\}$
- The goal is to illustrate the basic ideas
- This is a starting point for more complex logics (e.g., firstorder logic)

• Boolean nature can be exploited for efficiency.

Propositional logic: Complete Language

The **proposition** symbols $p_1, p_2 \dots$ etc are sentences

- If S is a sentence, ¬S is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Sample Formula $((P_1 \vee P_2) \wedge P_3) \iff ((P_2 \Rightarrow \gamma P_4) \vee P_5)$

Propositional Logics in practice

- Agent is told (perceives) some facts about the world propositions are true
- Agent is told (already knows / learns) how the world works
 - Agent can answer yes/no questions about whether other facts must be true

Using Logics to make inferences...

- 1) Begin with a **task domain**.
- Distinguish those things you want to talk about (the ontology).
- 3) Choose symbols in the computer to denote propositions $1 \vee e \psi_6 = \omega_6 \omega_6$
- 4) Tell the system **knowledge** about the domain. $lve_w_3 \land sw_3 e^{n} \rightarrow lve_w_4$ 5) Ask the system whether new statements about the domain are true or false. l_{2-on} ?

CPSC 322, Lecture 19

SLIDE

Electrical Environment

Lecture Overview

- Recap Planning
- Logic Intro

 Propositional <u>Definite Clause Logic</u>: Syntax

Propositional Definite Clauses

- Propositional Definite Clauses: our first logical representation and reasoning system.
 (very simple!)
- Only two kinds of statements:
 - that <u>a proposition is true</u>
 - that a proposition is true if one or more other propositions are true $P_1 \leftarrow P_3 \land P_4$
- Why still useful?
 - Adequate in many domains (with some adjustments)
 - Reasoning steps easy to follow by humans
 - Inference linear in size of your set of statements
 - Similar formalisms used in cognitive architectures

Propositional Definite Clauses: Syntax

Definition (atom)

An atom is a symbol starting with a lower case letter

Definition (body) $P_2 \land \dots \land P_n$ A **body** is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies. **Definition (definite clause)** A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body. (Read this as ``h if b.") **Definition (KB)** clauses

A knowledge base is a set of definite clauses

clausen

PDC Syntax: more examples

Definition (definite clause)

A **definite clause** is

- an atom or
- a rule of the form h ← b where h is an atom ('head') and b is a body.
 (Read this as 'h if b.')

- a) ai_is_fun
- b) ai_is_fun v ai_is_boring
- c) ai_is_fun ← learn_useful_techniques
- d) ai_is_fun ← learn_useful_techniques ∧ notTooMuch_work
- e) ai_is_fun ← learn_useful_techniques ∧ ¬ TooMuch_work
- *f)* ai_is_fun ← f(time_spent, material_learned)
- g) srtsyj ← errt ∧ gffdgdgd

A. Legal B. Not Legal

PDC Syntax: more examples

Legal PDC clause

Not a legal PDC clause

- a) ai_is_fun
- b) ai_is_fun v ai_is_boring
- c) ai_is_fun ← learn_useful_techniques
- d) ai_is_fun ← learn_useful_techniques ∧ notTooMuch_work
- e) ai_is_fun ← learn_useful_techniques ∧ ¬ TooMuch_work
- f) ai_is_fun ← f(time_spent, material_learned)
- g) srtsyj ← errt ∧ gffdgdgd

Do any of these statements mean anything? Syntax doesn't answer this question!

Learning Goals for today's class

You can:

• Verify whether a logical statement belongs to the language of full propositional logics.

• Verify whether a logical statement belongs to the language of propositional definite clauses.

Study for midterm (Mon Oct 28)

- Midtern: ~6 short questions (10pts each) + 2 problems (20pts each)
- Study: textbook and inked slides
- Work on all practice exercises and revise assignments!
- While you revise the learning goals, work on review questions (will post them tomorrow)- I may even reuse some verbatim ⁽²⁾
- Will post a couple of problems from previous offering (maybe slightly more difficult) ... but I'll give you the solutions ^(C)

2SP

Seore

Next class

• Definite clauses Semantics and Proofs (textbook 5.1.2, 5.2.2)