Stochastic Local Search Variants

Computer Science cpsc322, Lecture 16

(Textbook Chpt 4.8)

Oct, 11, 2013

 Λ

Lecture Overview

Recap SLS

SLS variants

Announcements

- No office hours today. Sorry
- Assignmnet-2 will be posted over the weekend

Stochastic Local Search

- Key Idea: combine greedily improving moves with randomization
 - As well as improving steps, we can allow a "small probability" of:
 - <u>Random steps</u>: move to a random neighbor. 1%
 - Random restart: reassign random values to all 5% variables.
 - Always keep best solution found so far
 - Stop when

Solution is found (in vanilla CSP . pw. skifqung all C)

• Run out of time (return best solution so far)

Runtime distributions in Alspace

- Let's look at some algorithms and their runtime distributions:
 - 1. Greedy Descent
 - 2. Random Sampling
 - 3. Random Walk
 - 4. Greedy Descent with random walk

• Simple scheduling problem 2 in Alspace:

What are we going to look at in Alspace

When selecting a variable first followed by a value:

- Sometimes select variable:
 - 1. that participates in the largest number of conflicts.
 - 2. at random, any variable that participates in some conflict.
 - 3. at random
- Sometimes choose value

 a) That minimizes # of conflicts
 b) at random

Lecture Overview

- Recap SLS
- SLS variants
 - Tabu lists
 - Simulated Annealing
 - Beam search
 - Genetic Algorithms

Tabu lists

- To avoid search to
 - Immediately going back to previously visited candidate
 - To prevent cycling
- Maintain a tabu list of the klast nodes visited.
 - Don't visit a poss. world that is already on the **tabu list**.

• Cost of this method depends on....K

Simulated Annealing

- Key idea: Change the degree of randomness....
- Annealing: a <u>metallurgical process</u> where metals are hardened by being slowly cooled.
 - Analogy: start with a high ``temperature": a high tendency to take random steps
 - Over time, cool down: more likely to follow the scoring function
- Temperature reduces over time, according to an annealing schedule

Simulated Annealing: algorithm

Here's how it works (for maximizing):

- You are in node n. Pick a variable at random and a new value at random. You generate n'
- If it is an improvement i.e., $h(u') \ge h(u)$, adopt it.

• we move to n' with probability $e^{(h(n')-h(n'))}$

see next shide.

CPSC 322, Lecture 16

Slide 11

Properties of simulated annealing search

One can prove: If <u>7 decreases slowly enough</u>, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.

Finding the ideal cooling schedule is unique to each class of problems

Lecture Overview

- Recap SLS
- SLS variants
 - Simulated Annealing
 - Population Based
 - ✓ Beam search
 - ✓ Genetic Algorithms

Population Based SLS

Often we have more memory than the one required for current node (+ best so far + tabu list)

Key Idea: maintain a population of *k* individuals

- At every stage, update your population.
- Whenever one individual is a solution, report it.

Simplest strategy: Parallel Search

- All searches are independent
- No information shared

but more memory j' no reasons to use it!

CPSC 322, Lecture 16

Slide 15

Population Based SLS: Beam Search Non Stochastic

- Like parallel search, with *k* individuals, but you choose the *k* best out of all of the neighbors.
- Useful information is passed among the k parallel search thread
 Kidvals
 Kid
- Troublesome case: If one individual generates several good neighbors and the other k-1 all generate bad successors.... the next generation will comprise Very similar individuals i

Population Based SLS: Stochastic Beam Search

- Non Stochastic Beam Search may suffer from lack of diversity among the k individual (just a more expensive hill climbing)
- Stochastic version alleviates this problem:
 - Selects the k individuals at random
 - But probability of selection proportional to their value (according to scoring function)
 Inclicker.

h: scoring function
$$\sum_i n_i$$

Prob of selecting
$$n_j ?= h(n_j)$$

 $\sum_i h(n_i)$

 n_i

CPSC 322, Lecture 16

 $\frac{\sum_i h(n_i)}{h(n_j)}$

Slide 17

Stochastic Beam Search: Advantages

- It maintains diversity in the population.
- **Biological metaphor** (asexual reproduction):
 - each individual generates "mutated" copies of itself (its neighbors)
 - The scoring function value reflects the fitness of the individual
 - ✓ the higher the fitness the more likely the individual will survive (i.e., the neighbor will be in the next generation)

Lecture Overview

- Recap SLS
- SLS variants
 - Simulated Annealing
 - Population Based

✓ Beam search

✓ Genetic Algorithms

Population Based SLS: Genetic Algorithms

- Start with k randomly generated individuals (population)
- An individual is represented as a string over a finite alphabet (often a string of 0s and 1s)
- A successor is generated by combining two parent individuals (loosely analogous to how DNA is spliced in sexual reproduction)
- Evaluation/Scoring function (fitness function). Higher values for better individuals.
- Produce the next generation of individuals by selection, crossover, and mutation

CPSC 322, Lecture 16

Genetic algorithms: Example

Selection: common strategy, probability of being chosen for reproduction is directly proportional to fitness score

Genetic algorithms: Example

Reproduction: cross-over and mutation

Genetic Algorithms: Conclusions

- Their performance is very sensitive to the choice of state representation and fitness function
- Extremely slow (not surprising as they are inspired by evolution!)

Learning Goals for today's class

You can:

- Implement a tabu-list.
- Implement the simulated annealing algorithm
- Implement population based SLS algorithms:
 - Beam Search
 - Genetic Algorithms.
- Explain pros and cons of different SLS algorithms .

Modules we'll cover in this course: R&Rsys

Assignment-2 on CSP will be out this evening (programming!)

Next class

How to select and organize a sequence of actions to achieve a given goal...

Start Planning (Chp 8.1-8.2 *Skip 8.1.1-2*)

322 Feedback ⁽²⁾ or ⁽²⁾

- Lectures
- Slides
- Practice
 Exercises
- Assignments
- Alspace

- Textbook
- Course Topics /
 Objectives
- TAs
- Learning Goals

Sampling a discrete probability distribution e.g. Sim. Amesling. Select n' with probability P generate randou [9,1]) 17<.3 accept n' e.g. Beam Search: Select Kindividuals. Probability of selection proportional to their value N3 first sample SAME HERE -> N1 ->N2 12 = .>n3 $\rightarrow^{V1}4$ CPSC 322, Lecture 16 Slide 29