Stochastic Local Search

Computer Science cpsc322, Lecture 15
(Textbook Chpt 4.8)

Oct, 9, 2013

CPSC 322, Lecture 15 Slide 1

Announcements

 Thanks for the feedback, we’ll discuss it on Mon

* Assignment-2 on CSP will be out next week
(programming!)

CPSC 322, Lecture 10 Slide 2

Lecture Overview

» Recap Local Search in CSPs

&

CPSC 322, Lecture 15 Slide 3

Local Search: Summary

A useful method in practice for large CSPs
* Start from a possible world (randowly C‘AOSW>

/generate some neighbors ('similar” possible worlds)
/ @Cﬂ 0(/1#@(‘ ~FY“0V\/\ owrfw“(' @0% WQ(M OV\\L'(bu‘ awne VN"‘o“'O‘ClS

velve
* Move from current node to a neighbor, selected to
_minimize/maximize a scoring function which combines:
v"Info about how many constraints are violated/satisfied

v’ Information about the cost/quality of the solution (you want the
best solution, not just a solution)

CPSC 322, Lecture 15 Slide 4

/
>< /L CPSC 322, Lecture 15 Slide 5

Hill Climbing

NOTE: Everything that will be said for Hill

Climbing is also true for Greedy Descent
| wm‘fﬂﬂ ¢ Scorin g

”—\-vv\ cAiown ” '

cverent ,

X) =

Xz = £

M%g"lkw@ Ters ures

>< | = 9 gl l Xﬂ- X

x 5 = b ti DSSUUMAC doraa) M

X2 lwkw@,i,z..\j

Slide 6

Problems with Hill Climbing

Local Maxima.

Plateau - Shoulders

ob_icctivifunction

shoulder

global maximum

/

A

/2 local maximum

L

"flat" local maximum
(Plateau)

—- -state space

cuirent ><-__—£% 2,2, .]

state

In higher dimensions.......

E.g., Ridges — sequence of local maxima not
directly connected to each other

From each local maximum you can only
go downhill

CPSC 322, Lecture 5 Slide 8

Corresponding problem for GreedyDescent

Local minimum example: 8-queens problem
Va . . \/L‘(—\ -~ Vp

CPSC 322, Lecture 5 Slide 9

Lecture Overview

» Stochastic Local Search (SLS)

CPSC 322, Lecture 15 Slide 10

Stochastic Local Search

GOAL: We want our local search
* to be guided by the scoring function
* Not to get stuck in local maxima/minima, plateaus etc.

« SOLUTION: We can alternate
a) Hill-climbing steps
b) Random steps: move to a random neighbor.
C) Random restart: reassign random values to all

vaniables, 4 3 wove to 11; whicl

X Q —) \WI PO VES scgm‘ma/
Q*M/L-\) A-Ut/\ch‘ol/\

— b> Sele(,t Ni FBV\O‘OW‘,"
=>) guwmp To 5 random

2 /] K CPSC 322, Lecture 15 YD DSS- WO‘(\O\ Slide 11

Which randomized method would work best in each of
these two search spaces?

Evaluation function Evaluation function
A X A Y
\/\l) ﬂ
\ ;Hff bclicker.
R it X
State Space (1 variable) State Space
(1 variable)

A. Greedy descent with random steps best on X
Greedy descent with random restart best on Y

B. Greedy descent with random steps best on Y
Greedy descent with random restart best on X

C. The two methods are equivalent on X and Y

Which randomized method would work best in each of
the these two search spaces?

Evaluation function Evaluation function
A A A B
> . ST
State Space (1 variable) tate Space

le)

« But these examples are simplified extreme cases for illustration
- in practice, you don’t know what your search space looks like

« Usually integrating both kinds of randomization works best

Random Steps (Walk)

Let’'s assume that neighbors are generated as
* assignments that differ in one variable's value

How many neighbors there are given n variables with

\
domains with d values? [new Le
o Cy’(\/\é X
One strategy to add randomness {0 the— Mles
selection ofthe variable-value pai g

Sometimes choose the pair < Va o Vs V5 Ve Vg Vs
gs According to the scoring function 0 11e [1 . e ()
2- ramn@ 23 ” 16 . 15 15<;= 16
E.G in 8-queen % § es ¢ (IR« R o B s
-~ \V
« How many neighbors?ﬁé . Z o "7 y W\W e <
° /_I..QQ\P.QSC one ot ﬂAQ_ ciecled 0;801 CQ"*\A 2 2|18 w 15 w
2 chopse ‘fblfldov“\ljoue oLie 56 3 14 17 14 18

CPSC 322, Lecture 5 7’ Slide 14

Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

* Sometimes select variable:
— 1. that participates in the largest number of conflicts. Vs
2. at random, any variable that participates in some conflict.
3. atrandom \/j, Wi Vs VgD =
* Sometimes choose value Vi Vo Vs VoL VL Vo Ve
« a) That minimizes # of conflicts Z %

b) at random&™ M oAty 4 select:

4

SoH PIS WD

Aispace

2 a: Greedy Descent with \W' M
Min-Conflict Heuristic CPSC 322, Lecture 5 # Condls Zslide 15

Successful application of SLS

« Scheduling of Hubble Space Telescope:
reducmg tlme to schedule _,vyge}ss,of

froi one weekto around @

CPSC 322, Lecture 5 Slide 16

Example: SLS for RNA secondary structure design
RNA strand made up of four bases: cytosine
(C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into
is important for its function RNA strand

Predicting structure for a GUCCCAUAGGAUGUCCCAUAGGA
strand is “easy”: O(n3)

But what if we want a strand that folds
into a certain structure? T
* |ocal search over strands Hard
v" Search for one that folds
into the right structure Secondary structure

* Evaluation function for a strand Hairpin loop
v Run O(n3) prediction algorithm

v" Evaluate how different the result is
from our target structure

v Only defined implicitly, but can be
evaluated by running the prediction algorithm

Multibranched loop

Stacked pairs

Internal loop
External base

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

CPSC 322, Lecture 1 17

CSP/logic: formal verification

Hardware verification Software verification
(e.g., IBM) (small to medium programs)

Most progress in the last 10 years based on:
Encodings into propositional satisfiability (SAT)

CPSC 322, Lecture 1 18

(Stochastic) Local search advantage:

Online setting
When the problem can change (particularly
important in scheduling)

E.g., schedule for airline: thousands of flights and
thousands of personnel assignment

e Storm can render the schedule infeasible
Goal: Repair with minimum number of changes

This can be easily done with a local search starting
form the current schedule

Other techniques usually:
* require more time
* might find solution requiring many more changes

SLS limitations

« Typically no guarantee to find a solution even if one exists

* SLS algorithms can sometimes stagnate
v Get caught in one region of the search space and never terminate

* Very hard to analyze theoretically

* Not able to show that no solution exists
* SLS simply won't terminate

* You don’'t know whether the problem is infeasible or the
algorithm has stagnated

SLS Advantage: anytime algorithms

* When should the algorithm be stopped ?

* When a solution is found
(e.g. no constraint violations)

* Or when we are out of time: you have to act NOW

* Anytime algorithm:
v’ maintain the node with best h found so far (the “incumbent”)
v’ given more time, can improve its incumbent

Lecture Overview

» Stochastic Local Search (SLS)
» Comparing SLS algorithms

CPSC 322, Lecture 15 Slide 22

Evaluating SLS algorithms

« SLS algorithms are randomized
* The time taken until they solve a problem is a random variable

* Itis entirely normal to have runtime variations of 2 orders of
magnitude in repeated runs!

v E.g. 0.1 seconds in one run, 10 seconds in the next one
v"On the same problem instance (only difference: random seed)

v'Sometimes SLS algorithm doesn’t even terminate at all:
stagnation

« If an SLS algorithm sometimes stagnates, what is its mean
runtime (across many runs)?
* [Infinity!
* In practice, one often counts timeouts as some fixed large value X

e Still, summary statistics, such as mean run time or median run
time, don't tell the whole story

v E.g. would penalize an algorithm that often finds a solution quickly but
sometime stagnates

First attempt....

 How can you compare three algorithms when
A. one solves the problem 30% of the time very quickly but doesn't

100% |

%_of solved runs

halt for the other 70% of the cases

B. one solves 60% of the cases reasonably quickly but doesn't solve

the rest

C. one solves the problem in 100% of the cases, but slowly?

\ \
(

Bl
|

\ o
Y
; _—
’1;,0/0
LIL
-
Ne
A > Mean runtime / steps

of solved run%I

CPSC 322, Lecture 5 ide 25

Runtime Distributions are even more

effective

Plots runtime (or number of steps) and the proportion (or
number) of the runs that are solved within that runtime.
* |og scale on the xaxis is commonly used

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

.I

0.8}
0.8}
0.7}
0.6}
0.5}
0.4}
0.3}
0.2}
04}

0

I”‘IIIIJ III ””1I[I3EI 1000

A

C

S—

of steps

CPSC 322, Lecture 5

Slide 26

Comparing runtime distributions

X axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime

* Typically use a log scale on the x axis

Fraction of
solved runs, i.e.

P(solved by
this # of
steps/time)

10 qo0 1000
of steps

Which algorithm is most likely to
solve the problem within 7 steps? A. blue @ C. green

Comparing runtime distributions

« Which algorithm has the best median performance?
* |.e., which algorithm takes the fewest number of steps to be

successful in 50% of the cases?
I r.
@ B. red C. green cke

1 ! L ! L

Fraction of 0sl
solved runs, i.e. |

P(solved by
this # of
steps/time)

1000
of steps

Comparing runtime distributions

X axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime

* Typically use a log scale on the x axis
Slow, but does

Fraction of ol Crossover point: | not stagnate
solved runs, i.e. if we run longer than 80
0.8 steps, green is the

0.7t best algorithm
P(solved b
(this # ofy 0. 1 57% solved
ol If we run less than | after 80 steps,

steps/time) 10 steps, red is the

04hest algorithn\ {then stagnate
[AE————— < & 0| \Y/<Te
1after 10 steps,

| then stagnate

10 dqo0 1000
of steps

Runtime distributions in Alspace

* Let's look at some algorithms and their runtime
distributions:
1. Greedy Descent

2. Random Sampling
3. Random Walk

4. Greedy Descent with random walk @ space

« Simple scheduling problem 2 in Alspace:

What are we going to look at in Alspace

When selecting a variable first || Alspace terminology
followed by a value:

~Kezps restorh,

/
_ _ Random samplin (?
Sometimes select variable: C\ rmﬁwcgl

1. that participates in the Random walk 2k
largest number of conflicts. —

2. at random, any variable that Greedy Descent 1 o
participates in some conflict. —

3. atrandom Greedy Descent Min

Sometimes choose value conflict %é

a) That minimizes # of conflicts / Greedy Descent with
b) at random random walk2;e__l3

Greedy Descent with
random restart

CPSC 322, Lecture 5 Slide 31

Stochastic Local Search

» Key Idea: combine greedily improving moves with
randomization

As well as improving steps we can allow a “small
probability” of: e %
. /lﬂ/
* Random steps: move to a random neighbor. ’

* Random restart: reassign random values to all g o
variables. ¢

» Always keep best solution found so far

« Stop when

* Run out of time (return best solution so far)

CPSC 322, Lecture 5 Slide 32

Learning Goals for today’s class

You can:

* Implement SLS with
* random steps (1-step, 2-step versions)
* random restart

 Compare SLS algorithms with runtime
distributions

CPSC 322, Lecture 4 Slide 33

Assign-2

* Will be out on Tue
» Assignments will be weighted:
A0 (12%), A1...A4 (22%) each

Next Class

 More SLS variants
* Finish CSPs
« (if time) Start planning

CPSC 322, Lecture 15 Slide 34

