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Department of Computer Science
Undergraduate Events
https://www.cs.ubc.ca/students/undergrad/life/upcoming-events

Global Relay Info Session/Tech
Talk

Date: Mon., Oct 7
Time: 5:30 pm
Location: DMP 301

Amazon Info Session/Tech Talk

Date: Tues., Oct 8
Time: 5:30 pm
Location. DMP 110

Go Global Experience Fair
Date: Wed., Oct 9
Time: 11 am -5 pm
Location: Irving K. Barber

Learning
Centre

Samsung Info Session

Date: Wed., Oct 9

Time: 11:30 am - 1:30 pm
Location: McLeod Rm 254

Google Info Session/Tech Talk
Date: Thurs., Oct 10
Time: 5:30 pm

Location:. DMP 110


https://www.cs.ubc.ca/students/undergrad/life/upcoming-events
https://www.cs.ubc.ca/students/undergrad/life/upcoming-events
https://www.cs.ubc.ca/students/undergrad/life/upcoming-events

Announcements

* Assignment1 due now!

* Assignment2 out next week
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Lecture Overview

» Recap solving CSP systematically
* Local search
» Constrained Optimization

» Greedy Descent / Hill Climbing:
Problems
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Systematically solving CSPs: Summary

 Build Constraint Network

* Apply Arc Consistency
* One domain is empty < 42 o
* Each domain has a single value — v que S0

/
7
* Some domains have more than one value —» l

May or W\zu]mo%' l/)a\/é > Soludioy

_7-7Apply Depth-First Search with Pruning

» Search by Domain Splitting

>7° Split the problem in a number of disjoint cases
é Apply Arc Consistency to each case
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Lecture Overview

* Recap
* Local search
» Constrained Optimization

» Greedy Descent / Hill Climbing:
Problems
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Local Search motivation: Scale

 Many CSPs (scheduling, DNA computing, more
later) are simply too big for systematic approaches

« If you have 10° vars with dom(var,) = 104

« Systematic Search  + Arc Consistency
) bclicker

(]
=]
@

b A. 10°*10% 2 \>
B. 1010* 8 0\
C. 1019 * 1012
gut if so>t|ons are densely distributed.......
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Local Search: General Method

Remember , for CSP a solution is..2.. possble wocld
e Start from a possible world (ot > path)
* Generate some neighbors ( “similar” possible worlds)

* Move from the current node to@igh@ selected
according to a particular strategy V\e(%l/\ bos o]

* Example: AB i stas
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Local Search: Selecting Neighbors

How do we determine the neighbors?

» Usually this is simple: some small incremental change to
the variable assignment

a) assignments that differ in one variable's value, by (for instance) a
—~ value difference of +1 12

b) assignments that differ in one variable's value ,
C) assignments that differ in two variables' values, et . @%‘éak

A

* Example: A,B,C same domain {1,2,3

®
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lterative Best Improvement

* How to determine the neighbor node to be selected?

* |terative Best Improvement:

* select the neighbor that optimizes some evaluation
function

« Which strategy would make sense”? Select neighbor
with ...

. L bclicker.
A. Maximal number of constraint violations -

B. Similar number of constraint violations as current state

C. No constraint violations

D. Minimal number of constraint violations



lterative Best Improvement

* How to determine the neighbor node to be selected?

* |terative Best Improvement:

* select the neighbor that optimizes some evaluation
function

* Which strategy would make sense”? Select

« Evaluation function:
h(n): number of constraint violations in state n

- Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n
with minimal h(n)
 Hill climbing: equivalent algorithm for maximization problems
* Here: maximize the number of constraints satisfied



Selecting the best neighbor

) . I -
jxample. A,B,C same domain {1,2,3}, (A=B, A>1, C*3)

A common component of the scoring function (heuristic) =>
select the neighbor that results in the ......

- the min conflicts heuristics
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Example: N-Queens

 Put n queens on an n x n board with no two
gueens on the same row, column, or diagonal
(i.e attacking each other)

/

AN /
N /

* Positions a queen
can attack

=
}A N

N
/




Example: N-queen as a local search problem
CSP: N-queen CSP

- One variable per column; domains {1,...,N} => row where
the queen in the it" column seats;

- Constraints: no two queens in the same row, column or
diagonal

Neighbour relation: value of a single column differs

Scoring function: number of attacks

How many neighbors ?

A 100 5, it suswer
B. 90 s 2x¥=54




Example: n-queens

Put 7 queens on an 7 x nboard with no two queens on
the same row, column, or diagonai (i.e attacking each other)

/"‘_—_/ _

Example: 4-Queens

F%mec: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column (‘ta xgwm{-c v\&\'g)\" loof‘fB

Goal test: no attacks

————
— ——

Evaluation: /.(n) = number of attacks

\/'L \/L\/b v
0O
(
2
[ 3

e =
NJR

\JQ//L /l =

VY7 N\
Jux o CPSC 322, Lecture 5 Slide 15
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Example: Greedy descent for N-Queen

For each column, assign randomly each queen to a row

(a number between 1 and N)
Repeat

* For each column & each number: Evaluate how many
constraint violations changing the assignment would

yield

* Choose the column and number that leads to the
fewest violated constraints; change it

Until solved

W

W







?
n-queens Why* b

A ex|@

3

/-~ o2l

Why this problem? >
Lots of research in the 90’ on local search for CSP
was generated by the observation that the run-

time of local search on n-queens problems is
independent of problem size!

Given random initial state, can solve n-queens in almost constant time for

arbitrary n with high probability (e.g., n = 10,000,000)
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Lecture Overview

* Recap
* Local search
» Constrained Optimization

» Greedy Descent / Hill Climbing:
Problems
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Constrained Optimization Problems

So far we have assumed that we just want to find a
possible world that satisfies all the constraints.

But sometimes solutions may have different values /
costs

* We want to find the optimal solution that
- I[maximizes the valu€ or

» (minimizes the@
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Constrained Optimization Example

* Example: A,B,C same domain {1,2,3} , (A=B, A>1, C*3)
* Value = KC+A) so we want a solution that maximize that

The scoring function we’d like to maximize mlght be
fin)=(C+A)+ #-oﬁsaz‘/sﬁed-con/s} (i Ly. > (\+\)+\ (24042

Hill Climbing means selecting the neighbor which best
improves a (value-based) scoring function.

Greedy Descent means selecting the neighbor which
minimizes a (cost-based) scoring function. cosC4- #o¢-couhct s
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Lecture Overview

* Recap
e Local search

» Greedy Descent / Hill Climbing:
Problems
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Hill Climbing

NOTE: Everything that will be said for Hill

Climbing is also true for Greedy Descent

W\ statoss lole we
. —
AN el
=

‘/7‘\_WO Vv s
Xy Xo

2dSsvwae dgu—;) ;\4
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Problems with Hill Climbing

Local Maxima.

Plateau - Shoulders

ob_icctivifunction

shoulder

global maximum

/

A

/] local maximum

L

"flat" local maximum
(Plateau)

—- -state space

cuirent ><:_—£9 2,2, .J

state



Corresponding problem for GreedyDescent

Local minimum example: 8-queens problem
Va . . \/L‘t\ -~ Vp
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Even more Problems in higher dimensions

E.g., Ridges — sequence of local maxima not
directly connected to each other

From each local maximum you can only
go downhill

AW
S
o
fo
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Local Search: Summary

A useful method for large CSPs

* Start from a possible world  ( randowly G‘MSW>

/generate some neighbors ( 'similar” possible worlds)
— 66 O(AHM 4\(‘0\/\/\ owrﬂxvi‘(' poss. wocld 9"‘\“'} bo‘ owe Vér\"élolfls
VlvC
* Move from current node to a neighbor, selected to
_minimize/maximize a scoring function which combines:

v'Info about how many constraints are violated

v’ Information about the cost/quality of the solution (you want the
best solution, not just a solution)
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Learning Goals for today’s class

You can:
* Implement local search for a CSP.
* Implement different ways to generate neighbors

* Implement scoring functions to solve a CSP by
ocal search through either greedy descent or
nill-climbing.
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Next Class

* How to address problems with Greedy Descent /
Hill Climbing?

Stochastic Local Search (SLS)
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