
CPSC 322, Lecture 9 Slide 1

Search: Advanced Topics
Computer Science cpsc322, Lecture 9

(Textbook Chpt 3.6)

January, 23, 2009

CPSC 322, Lecture 9 Slide 2

Lecture Overview

• Recap A*

• A* Optimal Efficiency

• Branch & Bound

• A* tricks

• Other Pruning

• Dynamic Programming

CPSC 322, Lecture 8 Slide 3

Optimal efficiency of A*

• In fact, we can prove something even stronger

about A*: in a sense (given the particular heuristic

that is available) no search algorithm could do

better!

• Optimal Efficiency: Among all optimal algorithms

that start from the same start node and use the

same heuristic h, A* expands the minimal number

of paths.

CPSC 322, Lecture 9 Slide 4

Why is A* optimally efficient?

Theorem: A* is optimally efficient.

• Let f* be the cost of the shortest path to a goal.

• Consider any algorithm A'

• the same start node as A* ,

• uses the same heuristic

• fails to expand some path p' expanded by A* ,for which

f(p') < f*.

• Assume that A' is optimal.
pp'

CPSC 322, Lecture 9 Slide 5

Why is A* optimally efficient? (cont’)

• Consider a different search problem

• identical to the original

• on which h returns the same estimate for each

path

• except that p' has a child path p'' which is a goal

node, and the true cost of the path to p'' is f(p').

• that is, the edge from p' to p'' has a cost of h(p'): the

heuristic is exactly right about the cost of getting from p' to a

goal.

p''

pp'

CPSC 322, Lecture 9 Slide 6

Why is A* optimally efficient? (cont’)

• A' would behave identically on this new problem.

• The only difference between the new problem and the

original problem is beyond path p', which A' does not

expand.

• Cost of the path to p'' is lower than cost of the path

found by A'.

• This violates our assumption that A' is optimal.

p''

pp'

CPSC 322, Lecture 9 Slide 7

Lecture Overview

• Recap A*

• A* Optimal Efficiency

• Branch & Bound

• A* tricks

• Other Pruning

• Dynamic Programming

CPSC 322, Lecture 9 Slide 8

Branch-and-Bound Search

• What is the biggest advantage of A*?

• What is the biggest problem with A*?

• Possible Solution:

CPSC 322, Lecture 9 Slide 9

Branch-and-Bound Search Algorithm

• Follow exactly the same search path as depth-first search

• treat the frontier as a stack: expand the most-recently
added path first

• the order in which neighbors are expanded can be
governed by some arbitrary node-ordering heuristic

CPSC 322, Lecture 9 Slide 10

Branch-and-Bound Search Algorithm
• Keep track of a lower bound and upper bound on solution

cost at each path
• lower bound: LB(p) = f(p) = cost(p) + h(p)

• upper bound: UB = cost of the best solution found so far.

 if no solution has been found yet, set the upper bound to .

• When a path p is selected for expansion:
• if LB(p) UB, remove p from frontier without expanding it (pruning)

• else expand p, adding all of its neighbors to the frontier

CPSC 322, Lecture 9 Slide 11

Branch-and-Bound Analysis

• Completeness: no, for the same reasons that DFS

isn't complete

• however, for many problems of interest there are no

infinite paths and no cycles

• hence, for many problems B&B is complete

• Time complexity: O(bm)

• Space complexity: O(mb)

• Branch & Bound has the same space complexity as DFS

• this is a big improvement over A*!

• Optimality: yes.

CPSC 322, Lecture 9 Slide 12

Lecture Overview

• Recap A*

• A* Optimal Efficiency

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 9 Slide 13

Other A* Enhancements

The main problem with A* is that it uses exponential

space. Branch and bound was one way around

this problem. Are there others?

• Iterative deepening A*

• Memory-bounded A*

CPSC 322, Lecture 9 Slide 14

(Heuristic) Iterative Deepening – IDA*

B & B can still get stuck in infinite paths

• Search depth-first, but to a fixed depth

• if you don't find a solution, increase the depth tolerance

and try again

• of course, depth is measured in f value

• Counter-intuitively, the asymptotic complexity is

not changed, even though we visit paths multiple

times (go back to slides on uninformed ID)

CPSC 322, Lecture 9 Slide 15

Memory-bounded A*

• Iterative deepening and B & B use a tiny amount

of memory

• what if we've got more memory to use?

• keep as much of the fringe in memory as we can

• if we have to delete something:

• delete the worst paths (with …………………………..)

• ``back them up'' to a common ancestor

p

pn
p1

CPSC 322, Lecture 9 Slide 16

Lecture Overview

• Recap A*

• A* Optimal Efficiency

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 10 Slide 17

Cycle Checking

You can prune a path that ends in a node already on the path.

This pruning cannot remove an optimal solution.

• The cost is ………………… in path length.

CPSC 322, Lecture 10 Slide 18

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear

problem into an exponential one!

CPSC 322, Lecture 10 Slide 19

Multiple-Path Pruning

•You can prune a path to node n that you have

already found a path to

• (if the new path is longer – more costly).

CPSC 322, Lecture 10 Slide 20

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the
first path to n ?

• You can remove all paths from the frontier that use the
longer path. (as these can’t be optimal)

CPSC 322, Lecture 10 Slide 21

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the
first path to n ?

• You can change the initial segment of the paths on the
frontier to use the shorter path.

CPSC 322, Lecture 9 Slide 22

Lecture Overview

• Recap A*

• A* Optimal Efficiency

• Branch & Bound

• A* tricks

• Pruning Cycles and Repeated States

• Dynamic Programming

CPSC 322, Lecture 9 Slide 23

Idea: for statically stored graphs, build a table of dist(n) the

actual distance of the shortest path from node n to a goal.

This is the perfect……..

This can be built backwards from the goal:

Dynamic Programming

otherwisemdistmn

ngoalisif
ndist

Amn
)(,min

),(_0
)(

,

a

b

c

g
2

3

1

3

g

b

c

a

2d

1

2

CPSC 322, Lecture 9 Slide 24

But there are at least two main problems:

• You need enough space to store the graph.

• The dist function needs to be recomputed for each goal

Dynamic Programming

This can be used locally to determine what to do.

From each node n go to its neighbor which minimizes

a

b

c

g
2

3

4

3

d

3

2

1

3

)(, mdistmn

2

1

2

CPSC 322, Lecture 7 Slide 25

Learning Goals for today’s class

• Define optimally efficient and formally prove that

A* is optimally efficient

•Define/read/write/trace/debug different search

algorithms

•With / Without cost

•Informed / Uninformed

• Pruning cycles and Repeated States

CPSC 322, Lecture 9 Slide 26

Next class

Recap Search

Start Constraint Satisfaction Problems (CSP)

