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Optimal efficiency of A”

 |n fact, we can prove something even stronger
about A” in a sense (given the particular heuristic
that is available) no search algorithm could do
better!

« Optimal Efficiency: Among all optimal algorithms
that start from the same start node and use the
same heuristic A4, A" expands the minimal number
of paths.
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Why is A optimally efficient?

Theorem: A’ is optimally efficient.

. Le@oe the cost of the shortest path to a goal.

« Consider any algorithm

« the same start node as A",
e uses the same heuristic

 fall and some path p’expanded by A", for which
fip) <F. j‘
o L

« Assume that A’is optimal. %QU

() 0
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Why is A" optimally efficient? (cont’)
« Consider a different search problem

* Identical to the original

 on which Areturns the same estimate for each
path

» except that p’has a child path p”"which-is a goal

—node,-and the true cost of the path to p"is f(p)).

* thatis, the edge from p’to p”has a cost of A(p’) the
heuristic is exactly right about the cost of getting from p’to a

goal. N <€\3§ o' O
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Why is A" optimally efficient? (cont’)

* A’would behave identically on this new problem.

* The only difference between the new problem and the
original problem is beyond path p’ which A'does not
expand.

« Cost of the path to p”is lower than cost of the path
found by A" ,Qf\

©

 This V|olate\éﬁr/c\/sumptlon that A'is optimal.
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Branch-and-Bound Search

 What is the biggest advantage of A*?
VL =~ ¢ h
* What is the biggest problem with A*?
lo M
* Possible Solution:

s -

§:\V, & Fp2<
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Branch-and-Bound Search Algorithm

* Follow exactly the same search path as depth-first search

* treat the frontier as a stack: expand the most-recently
added path first

* the order in which neighbors are expanded can be

governed bytwearbilr_aw node-ordering heuristig
)
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Branch-and-Bound Search Algorithm

« Keep track of a lower bound and upper bound on solution
cost at each path

* |lower bound: LB(p) = f(p) = cost(p) + h(p)
* upper bound: UB =cost of the best solution found so far.

v if no solution has been found yet, set the upper bound to 0.

 When a path pis selected for expansion:
* if LB(p)>UB, remove p from frontier without expanding it (pruning)
* else expand p, adding all of its neighbors to the frontier

/\\_ !é_: OO/ é/ zf
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Branch-and-Bound Analysis

Completeness: no, for the same reasons that DFS
Isn't complete

* however, for many problems of interest there are no
infinite paths and no cycles

* hence, for many problems B&B is complete

Time complexity:|Ob")

Space complexity: O(mb) &
* Branch & Bound has the same space complexity as DFS
* this is a big improvement over A’

Optimality: yes.
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Other A" Enhancements

The main problem with A”is that it uses exponential
space. Branch and bound was one way around
this problem. Are there others?

* l|terative deepening A* =
» Memory-bounded A" &
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(Heuristic) lterative Deepening — IDA*

B & B can still get stuck in infinite paths
« Search depth-first, but to a fixed depth

* if you don't find a solution, increase the depth tolerance
and try again
* of course, depth is measured in 7 value

« Counter-intuitively, the asymptotic complexity is
not changed, even though we visit paths multiple
times (go back to slides on uninformed /D)

2
oo )
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Memory-bounded A"
&
Iterative deepenirlgf’and B & B use a@tiny amountv\
of memory
what if we've got more memory to use?

keep as much of the fringe in memory as we can
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Cycle Checking

\\V‘C’/}(

g7 s
You can prune a path that ends in a node already on the path.

This pruning cannot remove an optimal solution.
- Theetigt is ....\\\.¢x7.... in path length.

e A
<I’\Q_VIL—“‘/—\AK>Q

CPSC 322, Lecture 10 Slide 17



Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear
problem into an exponential one!

A
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Multiple-Path Pruning

*You can prune a path to node nthat you have
already found a path to

* (if the new path is longer — more costly).
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to nis shorter than the
first path to n ?

* You can remove all paths from the frontier that use the
longer path. (as these can’t be optimal)
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to nis shorter than the
first path to n ?

* You can change the initial segment of the paths on the
frontier to use the shorter path.
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Dynamic Programming
|dea: for statically stored graphs, build a table of disf(n) the
actual distance of the shortest path from node nto a goal.
This is the perfect........

This can be built backwards from the goal:

) 0 if is_goal(n),
Ist(n) = min o, Kn,m>‘+dist(m): otherwise
g
b
C

d
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Dynamic Programming

This can be used locally to determine what to do.
From each node n go to its neighbor which minimizes

Kn,m>‘+dist(m):

But there are at least two main problems:
* You need enough space to store the graph.

* The dist function needs to be recomputed for each goal
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Learning Goals for today’s class

* Define optimally efficient and formally prove that
A* Is optimally efficient

Define/read/write/trace/debug different search

algorithms 23X B
o 2
@ Jninformed
oy M,

* Pruning cycles and Repeated States
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Next class

Recap Search
Start Constraint Satisfaction Problems (CSP)
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