Search: Advanced Topics

Computer Science cpsc322, Lecture 9
(Textbook Chpt 3.6)

January, 23, 2009

CPSC 322, Lecture 9 Slide 1

Lecture Overview
. Recap A* Wigpace JLQ — \L\ o
» A* Optimal Efficiency &
* Branch & Bound
« A" tricks
* Other Pruning
* Dynamic Programming

CPSC 322, Lecture 9 Slide 2

Optimal efficiency of A”

 |n fact, we can prove something even stronger
about A” in a sense (given the particular heuristic
that is available) no search algorithm could do
better!

« Optimal Efficiency: Among all optimal algorithms
that start from the same start node and use the
same heuristic A4, A" expands the minimal number
of paths.

CPSC 322, Lecture 8 Slide 3

Why is A optimally efficient?

Theorem: A’ is optimally efficient.

. Le@oe the cost of the shortest path to a goal.

« Consider any algorithm

« the same start node as A",
e uses the same heuristic

 fall and some path p’expanded by A", for which
fip) <F. j‘
o L

« Assume that A’is optimal. %QU

() 0

CPSC 322, Lecture 9

Slide 4

Why is A" optimally efficient? (cont’)
« Consider a different search problem

* Identical to the original

 on which Areturns the same estimate for each
path

» except that p’has a child path p”"which-is a goal

—node,-and the true cost of the path to p"is f(p)).

* thatis, the edge from p’to p”has a cost of A(p’) the
heuristic is exactly right about the cost of getting from p’to a

goal. N <€\3§ o' O
C@;c(?y N P +
é\/L?‘”é / \,\(Q(}/\ \/\’_E) o

Why is A" optimally efficient? (cont’)

* A’would behave identically on this new problem.

* The only difference between the new problem and the
original problem is beyond path p’ which A'does not
expand.

« Cost of the path to p”is lower than cost of the path
found by A" ,Qf\

©

 This V|olate\éﬁr/c\/sumptlon that A'is optimal.

CPSC 322, Lecture 9 Slide 6

Lecture Overview

 Recap A* @gpoe

» A* Optimal Efficiency

* Branch & Bound

« A’ tricks

* Other Pruning

* Dynamic Programming

CPSC 322, Lecture 9 Slide 7

Branch-and-Bound Search

 What is the biggest advantage of A*?
VL =~ ¢ h
* What is the biggest problem with A*?
lo M
* Possible Solution:

s -

§:\V, & Fp2<

CPSC 322, Lecture 9 Slide 8

Branch-and-Bound Search Algorithm

* Follow exactly the same search path as depth-first search

* treat the frontier as a stack: expand the most-recently
added path first

* the order in which neighbors are expanded can be

governed bytwearbilr_aw node-ordering heuristig
)

~ SN

T 67
JANN

7]

0 (| 2=

~——

CPSC 322, Lecture 9 Slide 9

Branch-and-Bound Search Algorithm

« Keep track of a lower bound and upper bound on solution
cost at each path

* |lower bound: LB(p) = f(p) = cost(p) + h(p)
* upper bound: UB =cost of the best solution found so far.

v if no solution has been found yet, set the upper bound to 0.

 When a path pis selected for expansion:
* if LB(p)>UB, remove p from frontier without expanding it (pruning)
* else expand p, adding all of its neighbors to the frontier

/_ !é_: OO/ é/ zf

éoze X @Qo&

CPSC 322, Lecture 9 Slide 10

Branch-and-Bound Analysis

Completeness: no, for the same reasons that DFS
Isn't complete

* however, for many problems of interest there are no
infinite paths and no cycles

* hence, for many problems B&B is complete

Time complexity:|Ob")

Space complexity: O(mb) &
* Branch & Bound has the same space complexity as DFS
* this is a big improvement over A’

Optimality: yes.

CPSC 322, Lecture 9 Slide 11

Lecture Overview

* Recap A* @gpoce

» A* Optimal Efficiency

* Branch & Bound

« A" tricks

* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 9 Slide 12

Other A" Enhancements

The main problem with A”is that it uses exponential
space. Branch and bound was one way around
this problem. Are there others?

* l|terative deepening A* =
» Memory-bounded A" &

CPSC 322, Lecture 9 Slide 13

(Heuristic) lterative Deepening — IDA*

B & B can still get stuck in infinite paths
« Search depth-first, but to a fixed depth

* if you don't find a solution, increase the depth tolerance
and try again
* of course, depth is measured in 7 value

« Counter-intuitively, the asymptotic complexity is
not changed, even though we visit paths multiple
times (go back to slides on uninformed /D)

2
oo)

CPSC 322, Lecture 9 Slide 14

Memory-bounded A"
&
Iterative deepenirlgf’and B & B use a@tiny amountv\
of memory
what if we've got more memory to use?

keep as much of the fringe in memory as we can

CPSC 322, Lecture 9 Slide 15

Lecture Overview

» Recap A* @space

» A* Optimal Efficiency

* Branch & Bound

« A" tricks

* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 9 Slide 16

Cycle Checking

\\V‘C’/}(

g7 s
You can prune a path that ends in a node already on the path.

This pruning cannot remove an optimal solution.
- Theetigt is\\\.¢x7.... in path length.

e A
<I’\Q_VIL—“‘/—\AK>Q

CPSC 322, Lecture 10 Slide 17

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear
problem into an exponential one!

A

CPSC 322, Lecture 10 Slide 18

Multiple-Path Pruning

*You can prune a path to node nthat you have
already found a path to

* (if the new path is longer — more costly).

CPSC 322, Lecture 10 Slide 19

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to nis shorter than the
first path to n ?

* You can remove all paths from the frontier that use the
longer path. (as these can’t be optimal)

CPSC 322, Lecture 10 Slide 20

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to nis shorter than the
first path to n ?

* You can change the initial segment of the paths on the
frontier to use the shorter path.

CPSC 322, Lecture 10 Slide 21

Lecture Overview

* Recap A* @gpoce

» A* Optimal Efficiency

* Branch & Bound

A" tricks

* Pruning Cycles and Repeated States
* Dynamic Programming

CPSC 322, Lecture 9 Slide 22

Dynamic Programming
|dea: for statically stored graphs, build a table of disf(n) the
actual distance of the shortest path from node nto a goal.
This is the perfect........

This can be built backwards from the goal:

) 0 if is_goal(n),
Ist(n) = min o, Kn,m>‘+dist(m): otherwise
g
b
C

d
CPSC 322, Lecture 9 Slide 23

Dynamic Programming

This can be used locally to determine what to do.
From each node n go to its neighbor which minimizes

Kn,m>‘+dist(m):

But there are at least two main problems:
* You need enough space to store the graph.

* The dist function needs to be recomputed for each goal
CPSC 322, Lecture 9 Slide 24

Learning Goals for today’s class

* Define optimally efficient and formally prove that
A* Is optimally efficient

Define/read/write/trace/debug different search

algorithms 23X B
o 2
@ Jninformed
oy M,

* Pruning cycles and Repeated States

CPSC 322, Lecture 7 Slide 25

Next class

Recap Search
Start Constraint Satisfaction Problems (CSP)

CPSC 322, Lecture 9 Slide 26

