Search: Advanced Topics

Computer Science cpsc322, Lecture 9

(Textbook Chpt 3.6)

January, 23, 2009

Lecture Overview

Appace f = C(h) h(h)

- Recap A*
- A* Optimal Efficiency
- Branch & Bound 2
- A^{*} tricks
- Other Pruning
- Dynamic Programming

Optimal efficiency of A*

- In fact, we can prove something even stronger about A^{*}: in a sense (given the particular heuristic that is available) no search algorithm could do better!
- Optimal Efficiency: Among all optimal algorithms that start from the same start node and use the same heuristic h, A* expands the minimal number of paths.

Why is *A*^{*} optimally efficient?

Theorem: *A*^{*} is optimally efficient.

- Let f* be the cost of the shortest path to a goal.
- Consider any algorithm A'
 - the same start node as A^{*},
 - uses the same heuristic
 - fails to expand some path p'expanded by A*, for which
 f(p') < f*.
- Assume that A' is optimal.

Why is A^{*} optimally efficient? (cont')

- Consider a different search problem
 - identical to the original
 - on which *h* returns the same estimate for each path
 - except that p'has a child path p"which is a goal node, and the true cost of the path to p" is f(p').

Why is A^{*} optimally efficient? (cont')

- A'would behave identically on this new problem.
 - The only difference between the new problem and the original problem is beyond path *p*', which *A*'does not expand.
- Cost of the path to p'' is lower than cost of the path found by A'.
 - This violates our assumption that A'is optimal.

Lecture Overview

- Recap A* Aspace
- A* Optimal Efficiency
- Branch & Bound
- A^{*} tricks
- Other Pruning
- Dynamic Programming

Branch-and-Bound Search

• What is the biggest advantage of A*?

• What is the biggest problem with A*?

use t

Sove spare

• Possible Solution:

Branch-and-Bound Search Algorithm

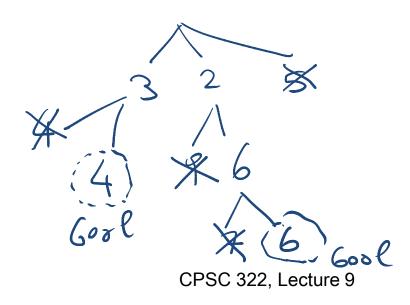
- Follow exactly the same search path as depth-first search
 - treat the frontier as a stack: expand the most-recently added path first
 - the order in which neighbors are expanded can be governed by some arbitrary node-ordering heuristic

Branch-and-Bound Search Algorithm

- Keep track of a lower bound and upper bound on solution cost at each path
 - lower bound: LB(p) = f(p) = cost(p) + h(p)
 - upper bound: *UB* = cost of the best solution found so far.

 \checkmark if no solution has been found yet, set the upper bound to ∞ .

- When a path *p* is selected for expansion:
 - if $LB(p) \ge UB$, remove p from frontier without expanding it (pruning)
 - else expand *p*, adding all of its neighbors to the frontier



VB = 00, 6, 4

Branch-and-Bound Analysis

- Completeness: no, for the same reasons that DFS isn't complete
 - however, for many problems of interest there are no infinite paths and no cycles
 - hence, for many problems B&B is complete
- Time complexity: $O(b^m)$
- Space complexity: O(mb)
 - Branch & Bound has the same space complexity as DFS
 - this is a big improvement over *A*^{*}!
- Optimality: yes.

Lecture Overview

Recap A*

- A* Optimal Efficiency
- Branch & Bound
- A* tricks
- Pruning Cycles and Repeated States
- Dynamic Programming

Other A* Enhancements

The main problem with A^* is that it uses exponential space. Branch and bound was one way around this problem. Are there others?

- Iterative deepening A*
- Memory-bounded A^{*}

(Heuristic) Iterative Deepening – IDA*

B & B can still get stuck in infinite paths

- Search depth-first, but to a fixed depth
 - if you don't find a solution, increase the depth tolerance and try again
 - of course, depth is measured in *f* value

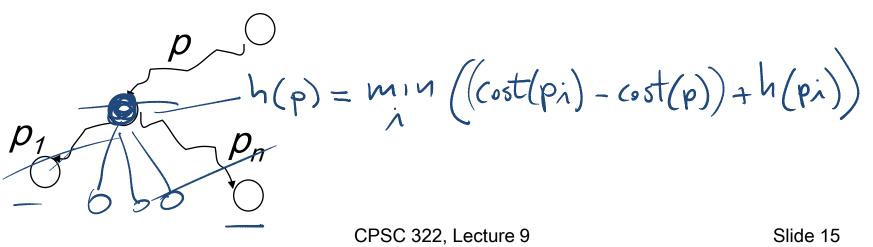
 $\left(\frac{b}{b}\right)^2$

 Counter-intuitively, the asymptotic complexity is not changed, even though we visit paths multiple times (<u>go back to slides on uninformed ID</u>)

Memory-bounded A*

- Iterative deepening and B & B use a tiny amount of memory
- what if we've got more memory to use?
- keep as much of the fringe in memory as we can
- if we have to delete something:

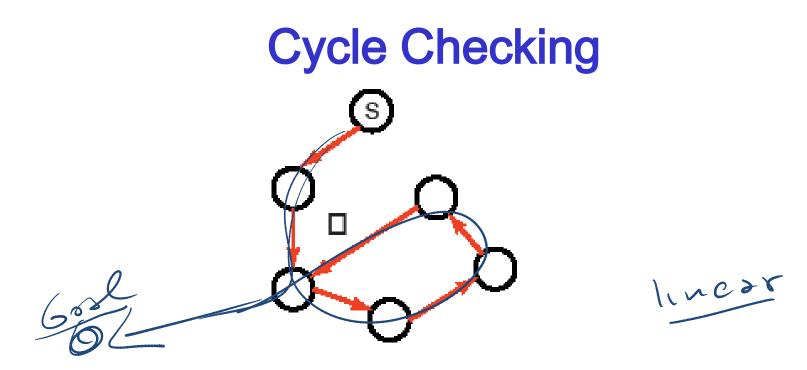
 - ``back them up" to a common ancestor



Lecture Overview

Recap A*

- A* Optimal Efficiency
- Branch & Bound
- A* tricks
- Pruning Cycles and Repeated States
- Dynamic Programming

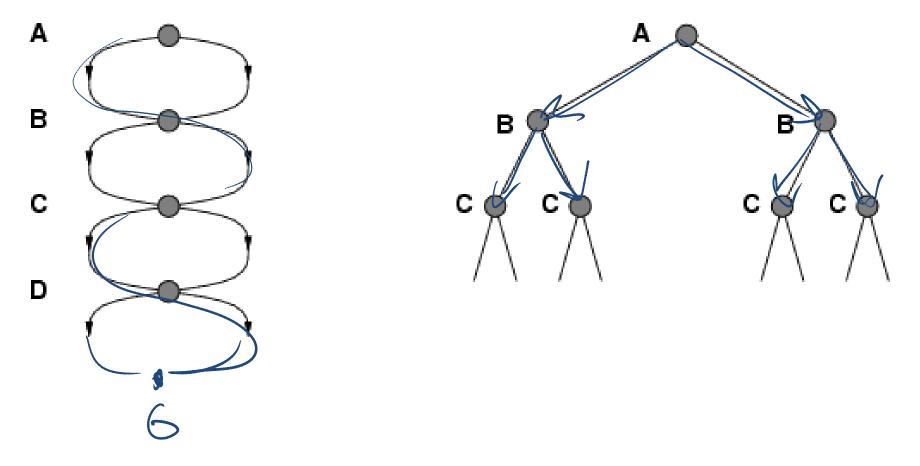


You can prune a path that ends in a node already on the path. This pruning cannot remove an optimal solution.

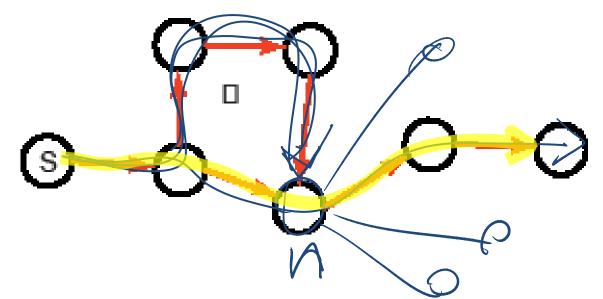
• The cost is $\underline{\text{Ninext...}}$ in path length. time $\langle h_1 h_2 - - h_k \rangle = \langle n_2 \rangle$

Repeated States / Multiple Paths

Failure to detect repeated states can turn a linear problem into an exponential one!



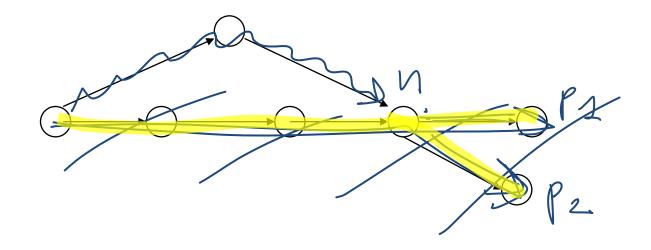
Multiple-Path Pruning



- •You can prune a path to node *n* that you have already found a path to
- (if the new path is longer more costly).

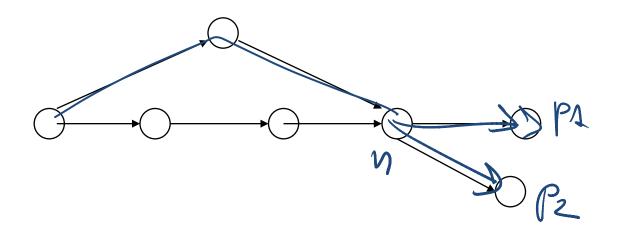
Multiple-Path Pruning & Optimal Solutions

- Problem: what if a subsequent path to *n* is shorter than the first path to *n*?
- You can remove all paths from the frontier that use the longer path. (as these can't be optimal)



Multiple-Path Pruning & Optimal Solutions

- Problem: what if a subsequent path to *n* is shorter than the first path to *n*?
- You can change the initial segment of the paths on the frontier to use the shorter path.



Lecture Overview

Recap A*

- A* Optimal Efficiency
- Branch & Bound
- A* tricks
- Pruning Cycles and Repeated States
- Dynamic Programming

Dynamic Programming

Idea: for statically stored graphs, build a table of *dist(n)* the actual distance of the shortest path from node *n* to a goal. This is the perfect.....

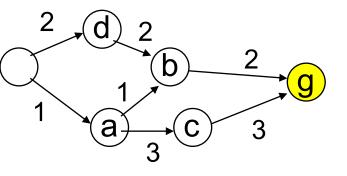
This can be built backwards from the goal:

$$dist(n) = \begin{cases} 0 & \text{if } is_goal(n), \\ \min_{\langle n,m\rangle \in A} \langle n,m\rangle + dist(m) \end{pmatrix} & \text{otherwise} \end{cases}$$

g

b

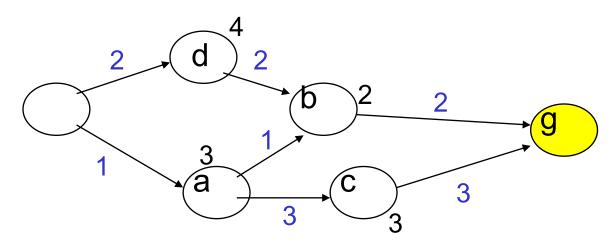
С



Dynamic Programming

This can be used locally to determine what to do. From each node n go to its neighbor which minimizes

$$\langle n,m \rangle + dist(m)$$



But there are at least two main problems:

- You need enough space to store the graph.
- The *dist* function needs to be recomputed for each goal

Learning Goals for today's class

 Define optimally efficient and formally prove that A* is optimally efficient

- •Define/read/write/trace/debug different search algorithms •With / Without cost •Informed / Uninformed •Informed / Uninformed
- Pruning cycles and Repeated States

Next class

Recap Search

.

Start Constraint Satisfaction Problems (CSP)