Decision-Theoretic Planning: Markov Decision Processes (MDPs)

Computer Science cpsc322, Lecture 36

(Textbook Chpt 9.5)

April, 6, 2009

V

Combining ideas for Stochastic planning

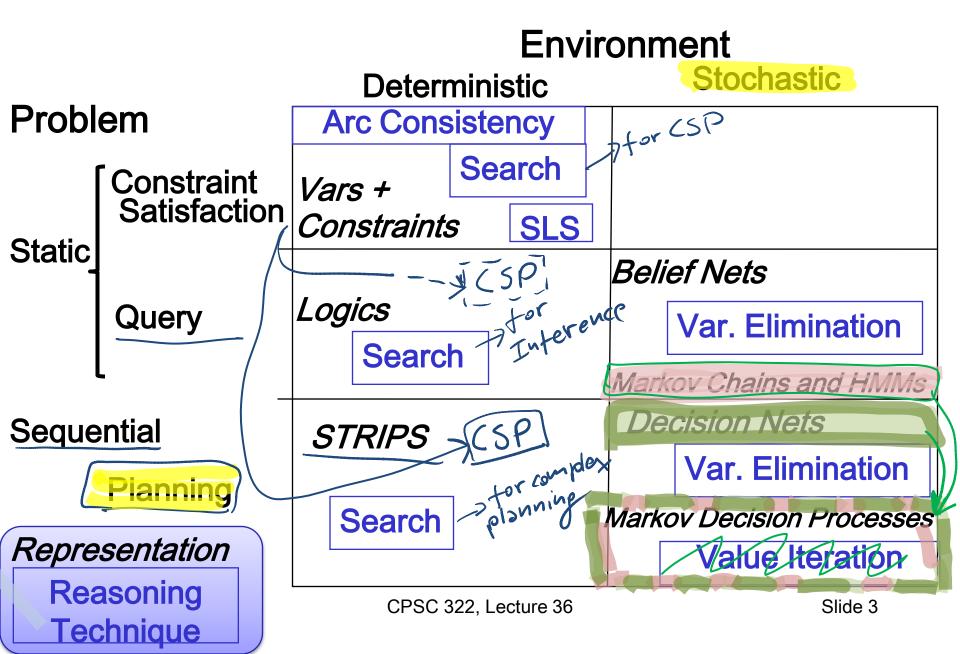
• What is a key limitation of decision networks?

Represent (and optimize) only a fixed number of decisions

What is an advantage of Markov models?
The network can extend indefinitely

Goal: represent (and optimize) an indefinite sequence of decisions CPSC 322. Lecture 36 Slide 2

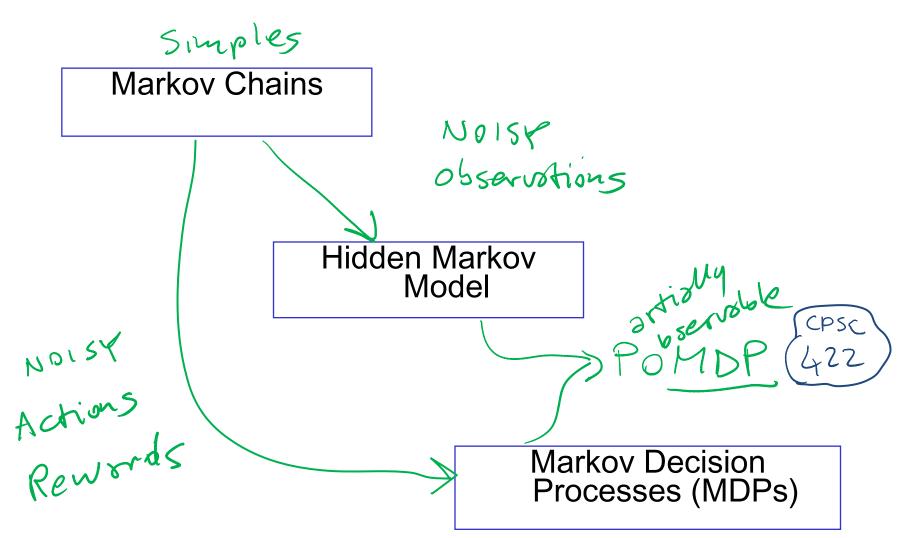
Planning in Stochastic Environments



Lecture Overview

- Recap: Markov Models
- Decision Processes: MDP
- MDP Example
- Reward and Optimal Policies

Markov Models



+ Recap: Markov Models Talles dom(s) = n (D/c) to, P(50) 1:4 \mathbb{S}_{4} P(h:n Strist domi (0) = KAMM **S**₄ $P(o_t|S_t)$ n:K 01 estated HMM unltiple sensors "sensor fusion" (L₂) (L₃) . L₀) , L₁, (L_4) Dı Da D_4

CPSC 322, Lecture 36

Lecture Overview

- Recap: Markov Models
- Decision Processes: MDP
- MDP Example
- Reward and Optimal Policies

Decision Processes

Often an agent needs to go beyond a fixed set of decisions – Examples?

• Would like to have an **ongoing decision process**

Infinite horizon problems: process does not stop robot surviving on a plonet Indefinite horizon problem: the agent does not know when the process may stop resolving location Finite horizon: the process must end at a give time N IN Steps

How can we deal with indefinite/infinite processes?

We make the same two assumptions we made for....

The action outcome depends only on the current state $M_{\approx r} k_{\circ v}$

Let S_t be the state at time $t \dots = P(S_{t+1} | S_t, A_t, S_{t-1}, A_{t-1})$

The process is stationary... $\frac{P(S_{t+1}|S_t,A_t)}{the some for M t}$

We also need a more flexible specification for the utility. How?

Defined based on a reward/punishment R(s) that the agent receives in each state s
So S1 - - - Sn
So S1 - - - Sn
So S1 - - - Sn

CPSC 322, Lecture 36

Slide 9

MDP: formal specification

For an MDP you specify:

- set S of states and set A of actions
- the process' dynamics (or *transition model*)

 $P(S_{t+1}|S_t, A_t)$

• The reward function

R(s, a, s')

describing the reward that the agent receives when it performs action a in state s and ends up in state s'R(s) is used when the reward depends only on the state s and not on how the agent got there

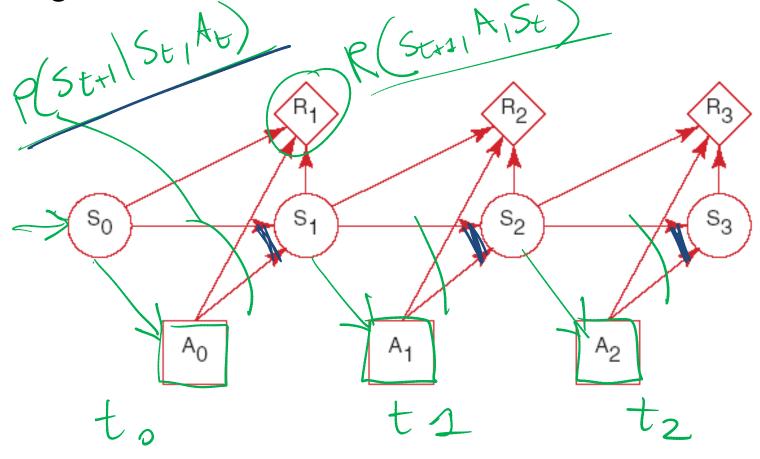
• Absorbing/stopping/terminal state S_{ab} for M action $P(S_{ab} | a, S_{ab}) = 1$ $R(S_{ab}, \partial, S_{ab}) = 0$

CPSC 322, Lecture 36

Slide 10

MDP graphical specification

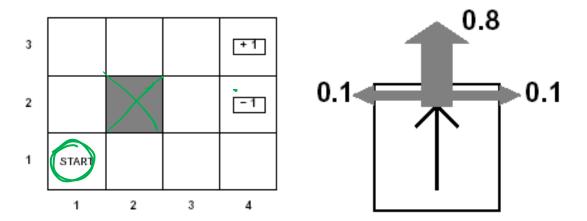
Basically a MDP augments a Markov Main augmentetd with actions and values



Lecture Overview

- Recap: Markov Models
- Decision Processes: MDP
- MDP Example
- Reward and Optimal Policies

Example MDP: Scenario and Actions

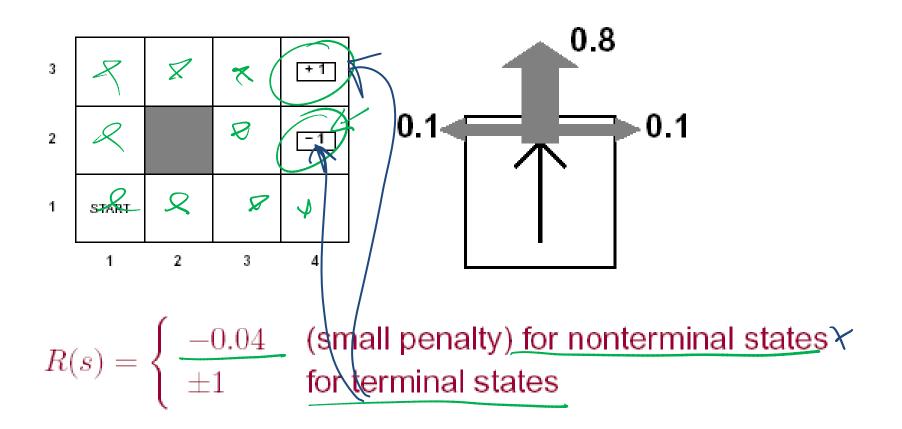


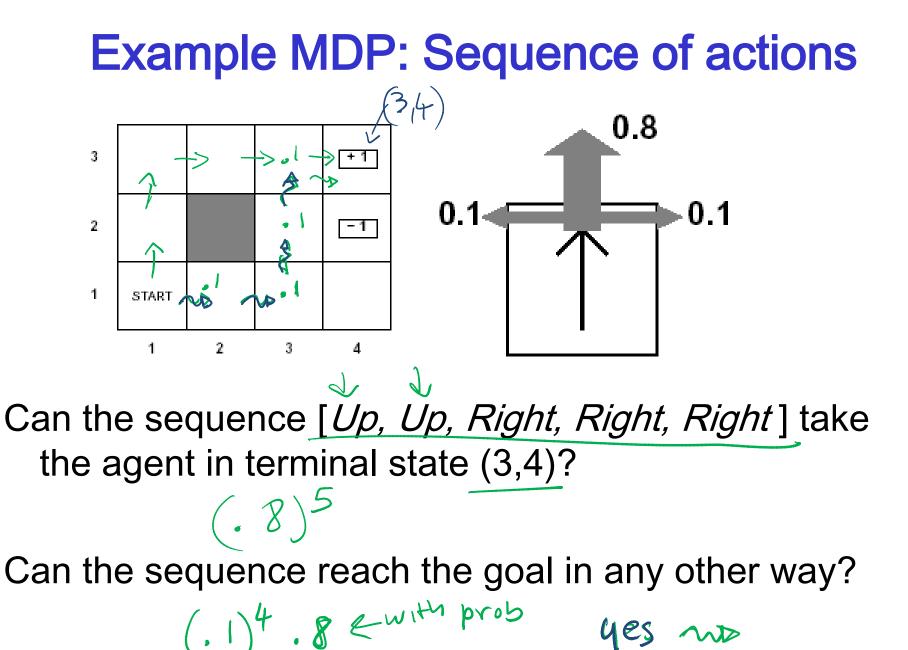
Agent moves in the above grid via actions *Up, Down, Left, Right* Each action has:

- 0.8 probability to reach its intended effect
- 0.1 probability to move at right angles of the intended direction
- If the agents bumps into a wall, it says there
- How many states? $11 \quad (11, 12, 13, ...,)$

There are two terminal states (3,4) and (2,4)

Example MDP: Rewards





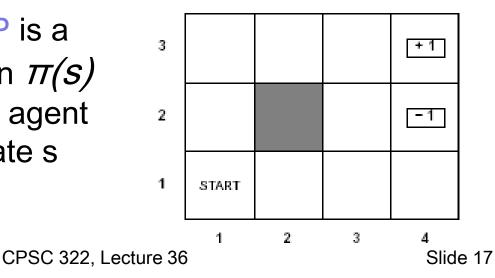
CPSC 322, Lecture 36

Lecture Overview

- Recap: Markov Models
- Decision Processes: MDP
- MDP Example STOP MERE JODAY
- Reward and Optimal Policies

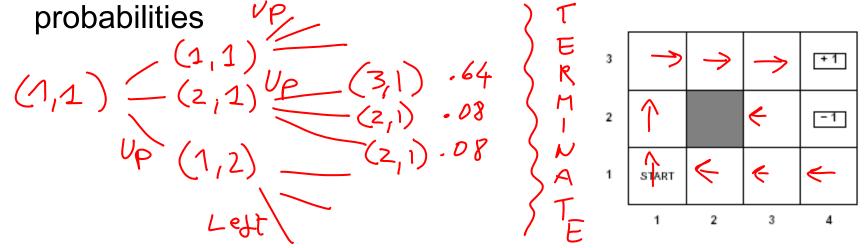
MDPs: Policy

- So what is the best sequence of actions for our Robot?
- There is no best sequence of actions!
- As we saw for decision networks, our aim is to find an optimal policy: a set of δ₁,...., δ_n decision functions
- But in an MDP the decision to be made is always.....
- Given the current state what should I do?
 - So a policy for an MDP is a single decision function π(s) that specifies what the agent should do for each state s



MDPs: optimal policy

Because of the stochastic nature of the environment, a policy can generate a set of environment histories with different



Optimal policy maximizes *expected total reward,* where

- Each environment history associated with that policy has a given amount of total reward
- Total reward is a function of the rewards of its individual states

Learning Goals for today's class

You can:

- TODAT
- Effectively represent indefinite/infinite decision processes
- Compute the probability of a sequence of actions in an Markov Decision Process (MDP)
- Compute the utility of a policy for an MDP

TAs evaluation form

- Evaluations are not obligatory
- Please evaluate only TAs you interacted with
- TAs and Instructor won't see the evaluations until after marks are submitted
- Keep your comment specific and constructive

Next Class

• Finish MDPs – Last Class

Announcements

• Assign4 due on Wed