Finish VE for Sequential Decisions & Value of Information and Control

Computer Science cpsc322, Lecture 35

(Textbook Chpt 9.4)

April, 3, 2009

CPSC 322, Lecture 35

Lecture Overview

- Sequential Decisions
 - Optimal Policy
 - Variable Elimination
- Value of Information
- Value of Control

Sequential decisions (Planning) under uncertainty

- What has been the output of planning so far? A sequence of actions
- Why this is not adequate?
 The agent does not know how the environment will be when it will have to decide (i.e., to select an action)
- What should the output be? decision fonctions: *For each decision (action selection)*, *a specification of what action will be the best in each possible configuration of the environment*^N

Complexity of finding the optimal policy: how

If there are d decisions, each with k binary parents and b possible actions, how many policies are there?

Finding the optimal policy more efficiently: VE

- 1. Remove all variables that are not ancestors of the utility node
- 2. Create a factor for each conditional probability table and a factor for the utility.
- **3. Sum out random variables** that are not parents of a decision node.
- Eliminate (aka sum out) the decision variables
- 5. Sum out the remaining random variables.
- 6. Multiply the remaining factors: this is the expected utility of the optimal policy.

Eliminate the decision Variables: details

- Select a variable D that corresponds to the latest decision to be made
 - this variable will appear in only one factor with its parents foresch configuration of the parents Eliminate D by maximizing. This returns:
- - The optimal decision function for D, arg max_D Value
 - A new factor to use in VE, max_D Value
- Repeat till there are no more decision nodes.

VE elimination reduces complexity of finding the optimal policy

- We have seen that, if a decision D has k binary parents, there are *b* possible actions, If there are d decisions,
- Then there are: (b^{2k}) policies linear in d
- Doing variable elimination lets us find the optimal policy after
 - VE is much more efficient than searching through policy space.
- However, this complexity is still doubly-exponential we'll only be able to handle relatively small problems. To solve Bigger problems _ give up non forgetting

- opprox. olgorithms

Lecture Overview

- Sequential Decisions
 - Optimal Policy
 - Variable Elimination
- Value of Information
- Value of Control

- What would help the agent make a better *Umbrella* decision?
- The value of information of a random variable X for decision D is: EU (KnowngX) EU(not Knowng)
 the utility of the network with an arc from X to D minus the utility of the network without the arc.
- Intuitively:
 - The value of information is always >
 - It is positive only if the agent changes its policy

Value of Information (cont.)

• The value of information provides a bound on how much you should be prepared to pay for a sensor. How much is a **perfect** weather forecast worth?

- Original maximum expected utility:
- Maximum expected utility when we know Weather: *91*
- Better forecast is worth at most: /4

77

Value of Information

• The value of information provides a bound on how much you should be prepared to pay for a sensor. How much is a **perfect** fire sensor worth?

- Original maximum expected utility: -22.6
- Maximum expected utility when we know Fire:
- Perfect fire sensor is worth: 20.6

-2

Lecture Overview

- Sequential Decisions
 - Optimal Policy
 - Variable Elimination
- Value of Information
- Value of Control

• What would help the agent to make an even better *Umbrella* decision? To maximize its utility.

	Weather	Umbrella	Value
	Rain	true	70
	Rain	false	0
	noRain	true	20
X	noRain	false	100

• The value of control of a variable X is :

the utility of the network when you make X a decision variable **minus** the utility of the network when X is a random variable.

Value of Control

• What if we could control the weather?

- Original maximum expected utility: 77
- Maximum expected utility when we control the weather: 100
- Value of control of the weather: 23

Value of Control

• What if we control Tampering?

• Original maximum expected utility:

• Maximum expected utility when we control the Tampering: -20.7

- Value of control of Tampering: 1. 1
- Let's take a look at the policy
- Conclusion: do not tamper with fire alarms!

Learning Goals for today's (and Wed) classes You can:

- Represent sequential decision problems as decision networks. And explain the non forgetting property
- Verify whether a possible world satisfies a policy and define the expected value of a policy
- Compute the number of policies for a decision problem
- Compute the optimal policy by Variable Elimination
- Compute value of information and control

Next class

 Markov Decision Processes (MDPs) (textbook 9.5)

Assignment 4 due on Wed Apr 8

Need to talk to student 521320