# Decision Theory: Single Stage Decisions 

Computer Science cpsc322, Lecture 33
(Textbook Chpt 9.2)

March, 30, 2009

## Lecture Overview

- Intro
- One-Off Decision Example
- Utilities / Preferences and optimal Decision
- Single stage Decision Networks


## Planning in Stochastic Environments

## Environment

Deterministic
Stochastic
Problem

|  | Ar |  |  |
| :---: | :---: | :---: | :---: |
| Constraint | Vars + Search <br> Constraints SLS |  |  |
| Query |  |  |  |
|  | STRIPS |  |  |
| sentation |  |  |  |

## Planning Under Uncertainty: Intro

- Planning how to select and organize a sequence of actions/decisions to achieve a given goal.
- Deterministic Goal: A possible world in which some proposition are true
- Planning under Uncertainty: how to select and organize a sequence of actions/decisions to "maximize the probability" of achieving a given goal
- Goal under Uncertainty: we'll move from all-ornothing goals to a richer notion: rating how happy the agent is in different possible worlds.


## "Single" Action vs. Sequence of Actions

 before acting$\rightarrow$ Agents makes observations
$\rightarrow$ Decides on an action

$$
\begin{aligned}
& \text { Sequentiol } \\
& \text { Decisions }
\end{aligned}
$$

$\rightarrow$ Carries out the action

## Lecture Overview

- Intro
- One-Off Decision Example
- Utilities / Preferences and Optimal Decision
- Single stage Decision Networks


## Recap: One-off decision example

## Delivery Robot Example

 not- Robot needs to reach a certain room
- Going through stairs may cause an accident.
- It can go the short way through long stairs, or the long way through short stairs (that reduces the chance of an accident but takes more time)
Which short (i)
=wry long (1)

- The Robot can choose to wear pads to protect itself or not (to protect itself in case of an accident) but pads slow it down

- If there is an accident the Robot does not get to the room


## Decision Tree for Delivery Robot

- This scenario can be represented as the following decision tree

- The agent has a set of decisions to make (a macro-action it can perform)
- Decisions can influence random variables
- Decisions have probability distributions over outcomes


## Decision Variables: Some general Considerations

- A possible world specifies a value for each random variable and each decision variable.
- For each assignment of values to all decision variables, the probabilities of the worlds satisfying that assignment sum to 1 .
.2



## Lecture Overview

- Intro
- One-Off Decision Problems
- Utilities / Preferences and Optimal Decision
- Single stage Decision Networks


## What are the optimal decisions for our Robot?

It all depends on how happy the agent is in different situations.
For sure getting to the room is better than not getting there..... but we need to consider other factors..


## Utility / Preferences

## Utility: a measure of desirability of possible worlds to an agent

- Let $U$ be a real-valued function such that $U(w)$ represents an agent's degree of preference for world $w \cdot[0,100]$
This would be a reasonable utility function for our Robot

| Which way | Accident | Wear Pads | Utility | World |
| :--- | :--- | :--- | :--- | :--- |
| short | true | true | 35 | w0, moderate damage |
| short | false | true | 95 | w1, reaches room, quick, extra weight |
| long | true | true | 30 | w2, moderate damage, low energy <br> long |
| false | true | 75 | w3, reaches room, slow, extra weight |  |
| short | true | false | 3 | w4, severe damage |
| short | false | false | 100 | w5, reaches room, quick |
| long | false | false | 0 | w6, severe damage, low energy |
| long | true | false | 80 | w7, reaches room, slow |
|  |  |  |  |  |

## Utility: Simple Goals

## - Can simple (boolean) goals still be specified?

 reaching the room| Which way | Accident | Wear Pads | Utility |
| :---: | :---: | :---: | :---: |
| long | true | true | $\bigcirc$ |
| long | true | false | 0 |
| long | false | true | Loo |
| long | false | false | 100 |
| short | true | true | $\bigcirc$ |
| short | true | false | 0 |
| short | false | true | LOo |
| short | false | false | し○○ |

Optimal decisions: How to combine Utility with

## Probability

What is the utility of achieving a certain probability distribution over possible worlds?


- It is its expected utility/value i.e., its average utility, weighting possible worlds by their probability.

$$
\begin{aligned}
& E \cup(W P=t, W W=\text { short })= \\
& =0.2 \& 35+.8 * 95
\end{aligned}
$$

## Optimal decision in one-off decisions

- Given a set of $n$ decision variables var $_{i}($ e.g., Wear Pads, $\omega$ Which Way), the agent can choose:
$D=d_{f}$ for any $d_{i} \in \operatorname{dom}\left(\right.$ var $\left._{1}\right) \times . . \times \operatorname{dom}\left(\right.$ var $\left._{n}\right)$.


Optimal decision: Maximize Expected Utility

- The expected utility of decision $D=d_{i}$ is

$$
\mathrm{E}\left(U \mid D=d_{i}\right)=\sum_{w=D=\alpha_{p}} P\left(w \mid D=d_{i}\right) U(w)
$$

e.g., $E(U \mid D=\{W P=f$ oise, $W W=$ short $\})=$


$$
\begin{aligned}
& P\left(w_{4} \mid D\right) * U\left(w_{4}\right)+ \\
& +P\left(w_{5} \mid D\right) * U\left(w_{5}\right)
\end{aligned}
$$

- An optimal decision is the decision $D=d_{\max }$ whose expected utility is maximal:

$$
d_{\max }=\underset{d_{i} \in \operatorname{dom}(D)}{\arg \max } \mathbb{E}\left(U \mid D=d_{i}\right)
$$

|  | Wear Pads |
| :--- | :--- |
| $\Rightarrow$ | Which way EU |
| $\Rightarrow$ true | short |
| $\Rightarrow$ true | long |
| $\Rightarrow$ false | short |
| $\Rightarrow$ false | long |

## Lecture Overview

- Intro
- One-Off Decision Problems
- Utilities / Preferences and Optimal Decison
- Single stage Decision Networks


## Single-stage decision networks

## Extend belief networks with:

- Decision nodes, that the agent chooses the value for. Drawn as rectangle.
- Utility node, the parents are the variables on which the utility depends. Drawn as a diamond.

| Which <br> way | Accident |  |
| :--- | :--- | :--- |
| long | true <br> long | 0.01 |
| false | 0.99 |  |
| Short <br> short | true <br> false | 0.2 |

- Shows explicitly which decision nodes affect random variables


| Which way | Accident | Wear Pads | Utility |
| :--- | :--- | :--- | :--- |
| long | true | true | 30 |
| long | true | false | 0 |
| long | false | true | 75 |
| long | false | false | 80 |
| short | true | true | 35 |
| short | true | false | 3 |
| short | false | true | 95 |
| short | false | false | 100 |

## Finding the optimal decision: We can use VE

Suppose the random variables are $X_{1}, \ldots, X_{n+}$ the decision
variables are the set $D$, and utility depends on
$p \cup \subseteq\left\{X_{1}, \ldots, X_{n}\right\} \cup D$

$$
\mathbb{E}(U \mid \underline{D})=\sum_{X_{\omega}, \cdots X_{n}} P(\underbrace{X_{1}, \ldots, X_{n}} \mid D) \underline{U(p U)}
$$



To find the optimal decision we can use VE:

1. Create a factor for each conditional probability and for the utility
2. Multiply factors and sum out all of the random variables (This creates a factor on $D$ that gives the expected utility for each $D$ )
3. Choose the $D$ with the maximum value in the factor.

## Example Initial Factors (Step1)



| Which way | Accident | Wear Pads | Utility |
| :--- | :--- | :--- | :--- |
| long | true | true | 30 |
| long | true | false | 0 |
| long | false | true | 75 |
| long | false | false | 80 |
| short | true | true | 35 |
| short | true | false | 3 |
| short | false | true | 95 |
| short | false | false | 100 |

## Example: Multiply Factors (Step 2a)



Example: Sum out vars and choose max (Steps 2b-3)


Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83 .

## Learning Goals for today’s class

## You can:

- Compare and contrast stochastic single-stage (one-off) decisions vs. multistage decisions
- Define a Utility Function on possible worlds
- Define and compute optimal one-off decision (max expected utility)
- Represent one-off decisions as single stage decision networks and compute optimal decisions by Variable Elimination


## Next Class (textbook sec. 9. 3 3)

Set of primitive decisions that can be treated as a single macro decision to be made before acting

## Sequential Decisions

$\rightarrow$ • Agents makes observations
$\rightarrow$ - Decides on an action
$\rightarrow$ - Carries out the action

