Probability and Time: Markov Models

Computer Science cpsc322, Lecture 31

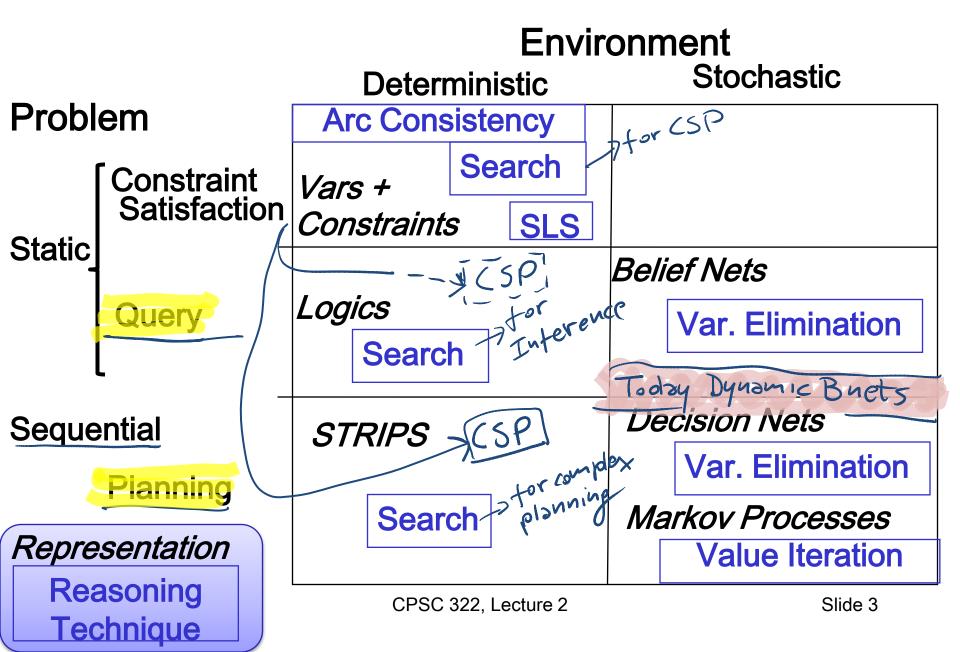
(Textbook Chpt 6.5)

March, 25, 2009

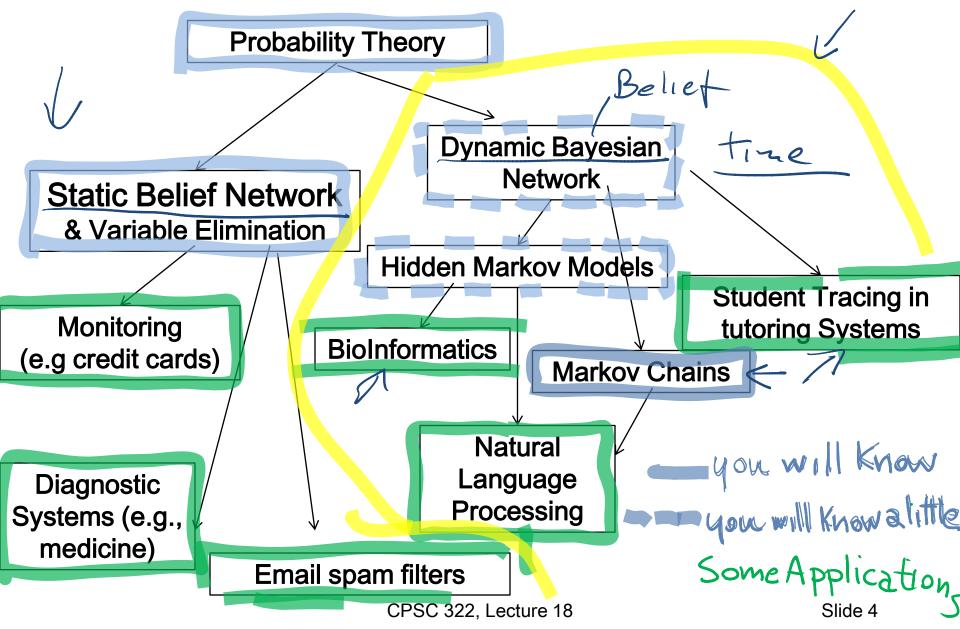
Recap

- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Big Picture: R&R systems



Answering Query under Uncertainty



- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Modelling static Environments

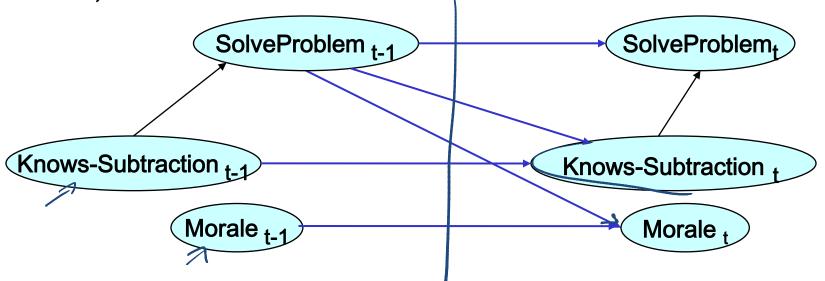
- So far we have used Bnets to perform inference in static environments
- For instance, the system keeps collecting evidence to diagnose the cause of a fault in a system (e.g., a car).
- The environment (values of the evidence, the true cause) does not change as I gather new evidence

• What does change?

The system's beliefs over possible causes

Modeling Evolving Environments

- Often we need to make inferences about evolving environments.
- Represent the state of the world at each specific point in time via a series of snapshots, or *time slices*, t-1

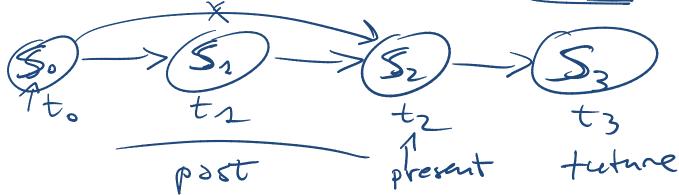


Tutoring system tracing student knowledge and morale

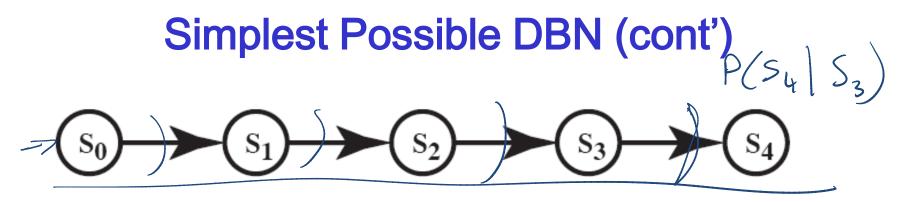
- Recap
- Temporal Probabilistic Models
- Start Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Simplest Possible DBN

• One random variable for each time slice: let's assume S_t represents the state at time *t*. with domain $\{s_1 \dots s_n\}$



- Each random variable depends only on the previous one
- Thus $(S_{t+1}|S_{\bullet}\cdots S_t) = P(S_{t+1}|S_t)$
- Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The future is independent of the past given the present."



- How many CPTs do we need to specify? $4 P(s_1|s_0) P(s_2|s_1) etc.$
- Stationary process assumption: the mechanism that regulates how state variables change overtime is stationary, that is it can be described by a single transition model
- · P(St | St-1) is the same for all t

Stationary Markov Chain (SMC)

$$(s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4)$$

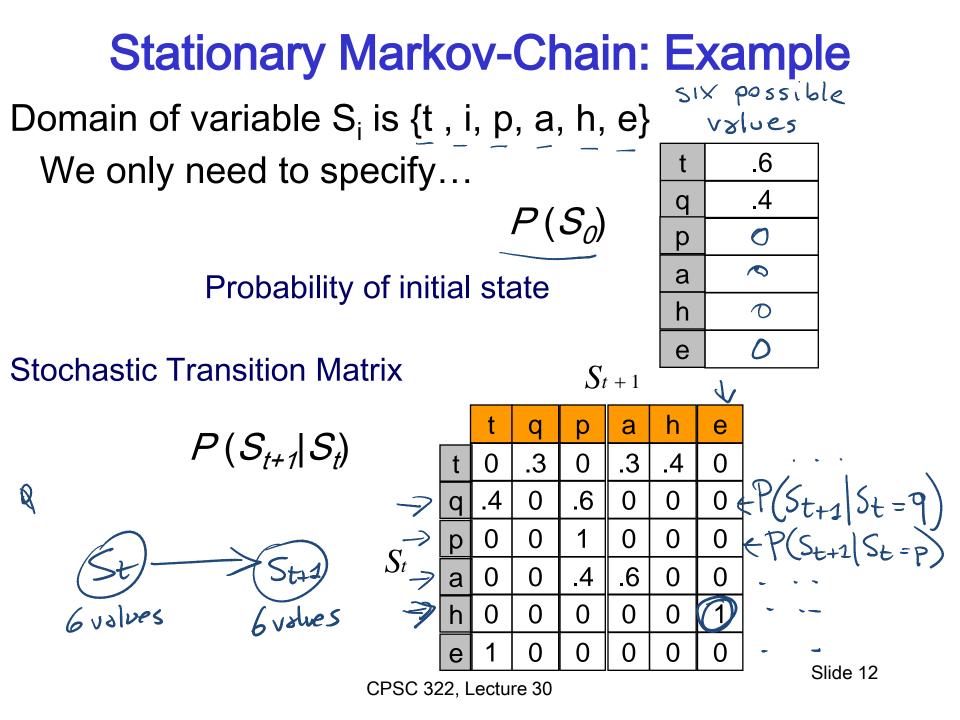
A stationary Markov Chain : for all t >0

- $P(S_{t+1} | S_0, \dots, S_t) = P(S_{t+1} | S_t)$ and Markov assumption
- $P(S_{t+1}|S_t)$ is the same stationary

We only need to specify $\mathcal{P}(\mathcal{S})$ and \mathcal{P}

$$S_{t+1}(S_t)$$

- Simple Model, easy to specify
- Often the natural model <
- The network can extend indefinitely
- Variations of SMC are at the core of most Natural in the Language Processing (NLP) applications! also used by Google to Bage Ronk algo (used by Web pages)



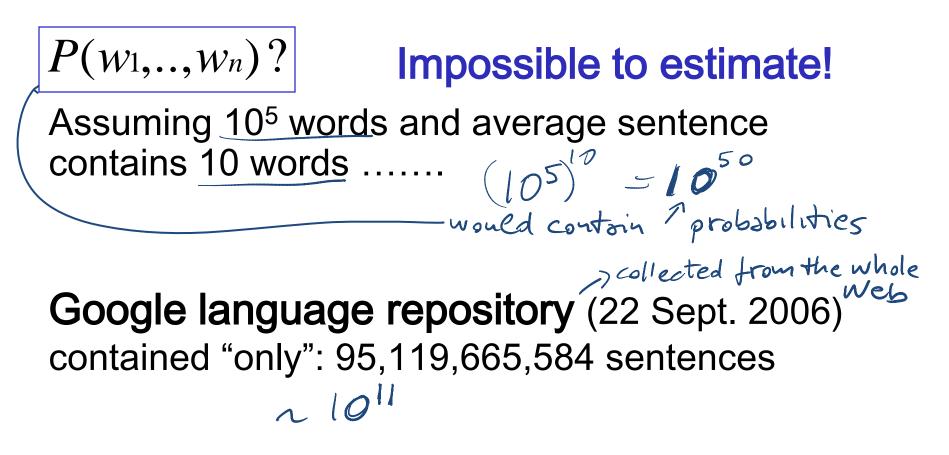
Markov-Chain: Inference Probability of a sequence of states $S_0 \dots S_T$ $P(S_0,...,S_T) = \mathbb{P}(S_0) \mathbb{P}(S_1 | S_0) \mathbb{P}(S_2 | S_1) -$ 71 $P(S_{t+1}|S_t)$ S_2 a e $P(S_0)$ -71 .3 P(M,ee) .4 0 .6 $\mathbf{0}$ $\mathbf{0}$ q Example: $\mathbf{0}$ 0 0 0 6 ()al 0 а P(t, q, p) =0 0 h N \mathbf{O} () $\neq P(q)$ 1t) * P. M/t - .108 . 6 8 • 3

CPSC 322, Lecture 30

- Recap
- Temporal Probabilistic Models
- Markov Models
 - Markov Chain
 - Markov Chains in Natural Language Processing

Key problems in NLP

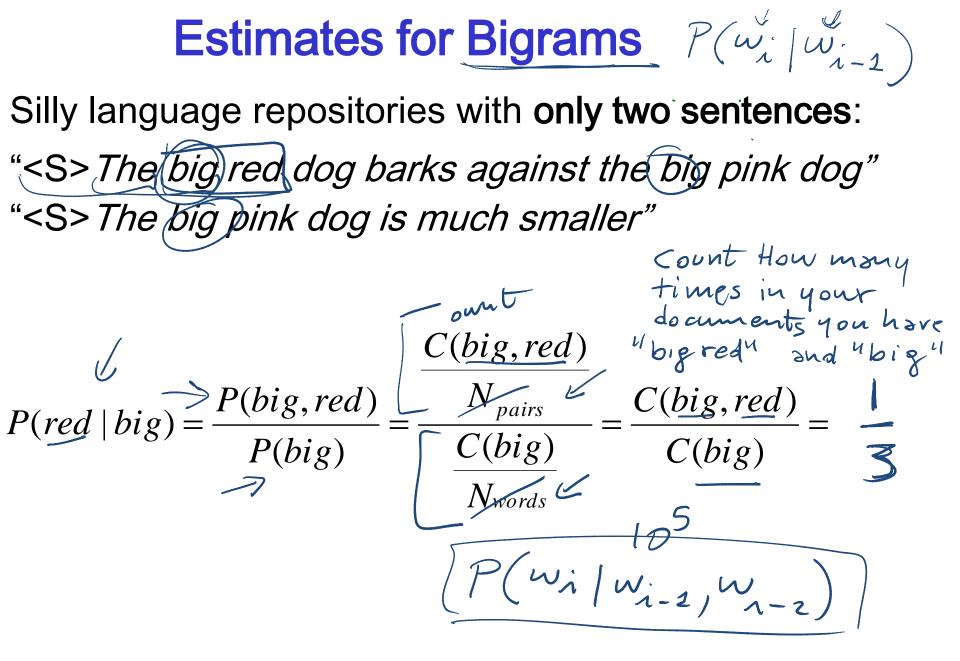
Nour verb $\begin{array}{c} \text{"Book me a room near UBC"} \\ w_{1} & w_{2} & w_{3} & w_{4} & w_{5} & w_{6} \end{array} \\ \text{Assign a probability to a sentence} \left(\partial \text{ sequence of words} \right) \end{array}$ $P(W_1,\ldots,W_n)$? Part-of-speech tagging ____ Symmarization, Machine → • Word-sense disambiguation, → *Translation*...... Probabilistic Parsing Predict the next word \mathcal{L} $P(w_n | w_1 \dots w_{N-1}) =$ • Speech recognition • Hand-writing recognition $= P(w_1 \dots w_N) / P(w_1 \dots w_{N-1})$ Augmentative communication for the disabled Impossible to $P(w_1,\ldots,w_n)$? CPSC503 Winter 2008 estimate 🙁 15 3/26/2009



Most sentences will not appear or appear only once \otimes

What can we do?

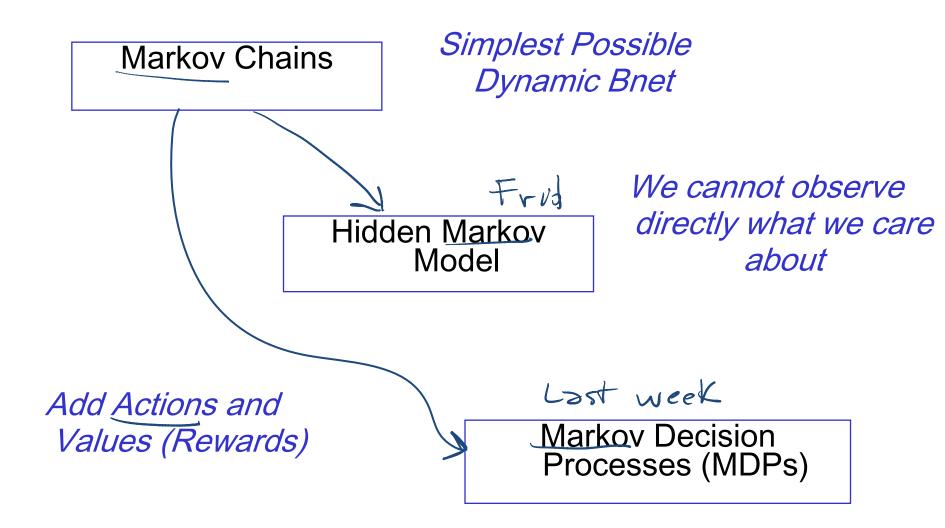
Make a strong simplifying assumption! Sentences are generated by a Markov Chain W1 st the beginning of a sentence $\underline{P(w_1,\ldots,w_n)} = P(w_1 | < \overline{S} >) \prod_{k=2}^n P(w_k | w_{k-1})$ $= P(w_1|<5>) P(w_2|w_1) P(w_3|w_2) ... P(w_k|w_{k-1})$ P(The big red dog barks)= SP(The|<S>)* P(big | the) & P(red | big) X.... X P(dog | red) & P(borks | dog) These probs can be assessed in practice!



Learning Goals for today's class

- You can:
- Specify a Markov Chain and compute the probability of a sequence of states
- Justify and apply Markov Chains to compute the probability of a Natural Language sentence (NOT to compute the conditional) probabilities - slide 18

Markov Models



Next Class

- Finish Probability and Time: Hidden Markov Models (HMM) (TextBook 6.5)
- Start Decision networks (TextBook chpt 9)

Course Elements

- Assignment 4 is available on webCT. It is due on Apr the 8th (last class).
 - You can now work on the first 3 questions. For the 4th one you have to wait until next week.