Reasoning Under Uncertainty: Bnet Inference

(Variable elimination)

Computer Science cpsc322, Lecture 29

(Textbook Chpt 6.4)
N
March, 20, 2009

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
- Intro
- Factors
- Variable elimination Intro

Learning Goals for Wed's class

You can:

- In a Belief Net, determine whether one variable is independent of another variable, given a set of observations.
- Define and use Noisy-OR distributions. Explain assumptions and benefit.
- Implement and use a naïve Bayesian classifier. Explain assumptions and benefit.

3 Configuration blocking dependency (belief propagation) EVIDENCE/OBSERVED

Bnets: Compact Representations

n Boolean variables, k max. number of parents

Only one parent with h possible values

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
- Intro
- Factors
- Variable elimination Algo

Bnet Inference

- Our goal: compute probabilities of variables in a belief network
What is the posterior distribution over one or more variables, conditioned on one or more observed variables?

Beet Inference: General

- Suppose the variables of the belief network are X_{1}, \ldots, X_{n}.
- (2) is the query variable
- $Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}$ are the observed variables (with their values)
- Z_{1}, \ldots, Z_{k} are the remaining variables
- What we want to compute: $P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)<$

Example:

$$
\begin{aligned}
& P(L \mid S=t, R=f) \\
& Z \leftrightarrow L \\
& Y_{1} Y_{2} \leftrightarrow S_{1} R
\end{aligned}
$$

What do we need to compute?
Remember conditioning and marginalization...

$$
P(L \mid S=t, R=f)=\frac{P(L, S=t, R=f) \leftarrow 0)}{P(S=t, R=f)}
$$

L	S	R	$P(L, S=t, R=f)$
t	t	f	, 3
f	t	f	.2

Do they have to sum up to one? no
(2) $=.5$

\rightarrow| L | S | R | $P(L / S=t, R=f)$ |
| :---: | :---: | :---: | :---: |
| \mathbf{t} | \mathbf{t} | f | .6 |
| f | t | f | .4 |

In general.....

$\xlongequal[P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)]{=} \frac{\left(\begin{array}{l}\text { condutiousl prob } \\ \frac{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{P\left(Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)} \\ \frac{\sum_{Z} P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}\end{array}\right.}{\text { (2) (1) }}$

- We only need to compute the numerstor and then normalize
- This can be framed in terms of operations between factors (that satisfy the semantics of probability)

Lecture Overview

Recap Bnets

- Bnets Inference
- Intro
- Factors
- Variable elimination Algo

Factors

- A factor is a representation of a function from a tuple of random variables into a number. $[0,1]$
- We will write factor f on variables X_{1}, \ldots, X_{j} as $f\left(X_{1}, \ldots, X_{n}\right)$
- A factor denotes one or more (possibly partial) distributions over the given tuple of variables
- e.g., $P\left(X_{1}, X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$ Distribution
- e.g., $P\left(X_{1}, X_{2}, X_{3}=v_{3}\right)$ is a factor Partial distribution $f\left(X_{1}, X_{2}\right) \times x_{3}=v_{3}$
- e.g $\frac{P(Z \mid X, Y)}{f(Z, X, Y)}$ s a factor Set of Distributions
- e.g., $P\left(X_{1}, X_{3}=v_{3} / X_{2}\right)$ is a factor set of partial

$$
f\left(X_{1}, X_{2}\right)_{x 3=v 3}
$$

Manipulating Factors:

We can make new factors out of an existing factor

- Our first operation: we can assign some or all of the variables of a factor.

$\mathrm{f}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}):$| X | Y | Z | val |
| :---: | :---: | :---: | :---: |
| t | t | t | 0.1 |
| t | t | f | 0.9 |
| t | f | t | 0.2 |
| t | f | f | 0.8 |
| f | t | t | 0.4 |
| f | t | f | 0.6 |
| f | f | f | t |
| f | f | 0.3 | |

What is the result of assigning $X=t$?

$$
f(X=t, Y, Z)
$$

$$
f(X, Y, Z)_{X_{1}=v_{1}}
$$

More examples of assignment

Summing out a variable example

Our second operation: we can sum out a variable, say X_{1} with domain $\left\{v_{1}, \ldots, v_{k}\right\}$, from factor $f\left(X_{1}, \ldots, X_{j}\right)$, resulting in a factor on X_{2}, \ldots, X_{j} defined by:

A	(B)	c	val	A		
$\rightarrow \mathrm{t}$	t	t	0.03			
$\sim D t$	t	f	0.07		C	. 57
$\rightarrow \mathrm{t}$	f	t	0.54	$\rightarrow \mathrm{t}$	t	
$\mathrm{f}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}): \sim \mathrm{Dt}$	f	f	0.36	$\Sigma_{B} \mathrm{f}_{3}(\mathrm{~A}, \mathrm{C}):$ AOD t	f	. 43
	t	t	0.06	f	t	
	t	f	0.14	f	f	
	f	t	0.48			
	f	f	0.32			
$f)\left(\alpha_{2}, \ldots, x\right.$	$\overline{=} f$	X_{1}	v_{1}, X	$\left.X_{j}\right)+\ldots+f\left(X_{1}\right.$	$=v_{k},$	X_{2}, \ldots

Multiplying factors

- Our third operation: factors can be multiplied together.

A	B	Val
$0 \rightarrow t$	t	0.1
$\mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}): * \mathrm{t}$	f	0.9
f	t	0.2
f	f	0.8
B	c	Val
\bigcirc	t	0.3
$\mathrm{f}_{2}(\mathrm{~B}, \mathrm{C})$: \quad t	f	0.7
* f	t	0.6
f	f	0.4

A	B	c	val
$0 \rightarrow t$	(t	t	. 03
- \rightarrow t	t	f	.07
* t	f	t	. 54
$\mathrm{f}_{1}(\mathrm{~A}, \mathrm{~B}) \times \mathrm{f}_{2}(\mathrm{~B}, \mathrm{C}): \quad \mathrm{t}$	f	f	
f	t	t	
f	t	f	
f	f	t	
f	f	f	

Multiplying factors: Formal

-The product of factor $f_{1}(A, B)$ and $f_{2}(B, C)$, where B is the variable in common, is the factor $\left(f_{1} \times f_{2}\right)(A, B, C)$ defined by:

$$
\left(f_{1} \times f_{2}\right)(A, B, C)=f_{1}(A, B) f_{2}(B, C)
$$

Note1: it's defined on all A, B, C triples, obtained by multiplying together the appropriate pair of entries from f_{1} and f_{2}.

Note2: A, B, C can be sets of variables

Factors Summary

- A factor is a representation of a function from a tuple of random variables into a number.
- $f\left(X_{1}, \ldots, X_{j}\right)$.
- We have defined three operations on factors:
1.Assigning one or more variables

- $f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$ is a factor on X_{2}, \ldots, X_{j}, also written as $f\left(X_{1}, \ldots, X_{j}\right)_{X_{1}=v_{1}}$ resulting factor is smaker

2. Summing out variables \sum same

$$
\cdot\left(\Sigma_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right)=f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\ldots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)
$$

3.Multiplying factors $>$ resulting factor is bigger

$$
\cdot\left(f_{1} \times f_{2}\right)(A, B, C)=f_{1}(A, B) f_{2}(B, C)
$$

Lecture Overview

Recap Bnets

Bnets Inference

- Intro
- Factors
- Intro Variable elimination Algo

Variable Elimination Intro

- Suppose the variables of the belief network are X_{1}, \ldots, X_{n}.
(Z) the query variable
- $Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}$ are the observed variables (with their values)
$\cdot Z_{1}, \ldots, Z_{k}$ are the remaining variables
- What we want to compute: $\frac{P\left(Z \mid Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)}{}$
- We show before that what we actually peed to compute is

$$
P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)
$$

This can be computed in terms of operations between factors (that satisfy the semantics of probability)

Variable Elimination Intro

- If we express the joint as a factor,

- We can compute $P\left(Z, Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}\right)$ by ??
- assigning $Y_{1}=v_{1}, \ldots, Y_{j}=v_{j}$
-and summing out the variables Z_{1}, \ldots, Z_{k}

Learning Goals for today's class

You can:

- Define factors. Derive new factors from existing factors. Apply operations to factors, including assigning, summing out and multiplying factors.
- (Minimally) Carry out variable elimination by using factor representation and using the factor operations. Use techniques to simplify variable elimination.

Next Class

Variable Elimination

- The algorithm
- An example

Course Elements

- Two Practice Exercises on Bnet available.
- Assignment 3 is due on Monday!
- Assignment 4 will be available on Wednesday and due on Apr the $8^{\text {th }}$ (last class).

