Reasoning Under Uncertainty: Bnet Inference

(Variable elimination)

Computer Science cpsc322, Lecture 29

(Textbook Chpt 6.4)

March, 20, 2009

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Intro

Learning Goals for Wed's class

You can:

• In a Belief Net, determine whether one variable is independent of another variable, given a set of observations.

• Define and use **Noisy-OR** distributions. — Explain assumptions and benefit.

 Implement and use a naïve Bayesian classifier. Explain assumptions and benefit.

3 Configuration blocking dependency (belief propagation)

Bnets: Compact Representations

n Boolean variables, k max. number of parents

Only one parent with h possible values

Lecture Overview

- Recap Learning Goals previous lecture
- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Bnet Inference

 Our goal: compute probabilities of variables in a belief network

What is the posterior distribution over one or more variables, conditioned on one or more observed variables?

Bnet Inference: General

- Suppose the variables of the belief network are X_1, \dots, X_n .
- Z is the query variable
- $Y_1 = v_1, ..., Y_j = v_j$ are the observed variables (with their values)
- $Z_1, ..., Z_k$ are the remaining variables

• What we want to compute:
$$P(Z | Y_1 = v_1, ..., Y_j = v_j)$$

Example:

$$P(L \mid S = t, R = f)$$

CPSC 322, Lecture 29

Slide 8

What do we need to compute?

Remember conditioning and marginalization...

$$\frac{P(L,S=t,R=t) \leftarrow 0}{P(S=t,R=t)}$$

L	S	R	P(L, S=t, R=f)
t	t	f	, 3
f	t	f	. 2

Do they have to sum up to one?

(2) =	. 5

	L	S	R	P(L S=t, R=f)
7	t	t	f	,6
	f	t	f	.4

In general.....

$$\underline{P(Z | Y_1 = v_1, ..., Y_j = v_j)} = \frac{\underline{P(Z, Y_1 = v_1, ..., Y_j = v_j)}}{\underline{P(Y_1 = v_1, ..., Y_j = v_j)}} = \frac{\underline{P(Z, Y_1 = v_1, ..., Y_j = v_j)}}{\underline{\sum_{Z} P(Z, Y_1 = v_1, ..., Y_j = v_j)}}$$

- We only need to **compute the numerator** and then **normalize**
- This can be framed in terms of operations between factors (that satisfy the semantics of probability)

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Variable elimination Algo

Factors

- A factor is a representation of a function from a tuple of random variables into a number. [0,1]
- We will write factor f on variables X_1, \ldots, X_j as $+(\times_2, \cdots, \times_n)$
- A factor denotes one or more (possibly partial) distributions over the given tuple of variables
 - e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$ Distribution
 - e.g., $P(X_1, X_2, X_3 = v_3)$ is a factor/ Partial distribution $f(X_1, X_2) = v_3$
 - e.g., $P(Z \mid X, Y)$ is a factor Set of Distributions f(X, Y, Z)
 - e.g., $P(X_1, X_3 = v_3 | X_2)$ is a factor Set of partial $f(X_1, X_2)_{X_3 = v_3}$ Distributions

CPSC 322, Lectu

// -		١ ١ ١	0.1
t	t	f	0.9
t	f	t	0.2
t	f	f	0.8
f	t	t	0.4
f	t	f	0.6
f	f	t	0.3
f	f	f	0.7

val

Manipulating Factors:

We can make new factors out of an existing factor

 Our first operation: we can assign some or all of the variables of a factor.

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
f(X,Y,Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	<u>f</u>		f	0.7

What is the result of assigning X= t ?

$$f(X=t,Y,Z)$$

$$f(X, Y, Z)_{X_1 = V_1}$$

More examples of assignment

	X	Y	Z	val				
	t	t	t	0.1		Υ	Z	val
	t	t	f	0.9	-	<u>.</u>	4	
	t	f	t	0.2	•	t	t	0.1
	·	-			r(X=t,Y,Z):	t	f	0.9
r(X,Y,Z):	t	f	f	0.8		4	+	0.2
	f	t	t	0.4		'		
						f	f	8.0
	f	t	f	0.6			I	
	f	f	t	0.3				
	f	f	f	0.7				

$$r(X=t,Y,Z=f): \rightarrow t \qquad f \qquad g$$

$$r(X=t,Y=t,Z=f)$$
: val

Summing out a variable example

Our second operation: we can **sum out** a variable, say X_1 with domain $\{v_1, ..., v_k\}$, from factor $f(X_1, ..., X_j)$, resulting in a factor on $X_2, ..., X_i$ defined by:

			. ————————————————————————————————————	<i>_</i>		
Α	B	С	val	_		
\rightarrow t	t	t	0.03		1 0	Ι.
md t	t	f	0.07	A	С	val
\rightarrow t	f	t	0.54	→ t	t	.57
$f_3(A,B,C): \longrightarrow t$	f	f	0.36	$\sum_{B}f_3(A,C)$: \longleftrightarrow t	f	-43
f	t	t	0.06	f	t	
f	t	f	0.14	f	f	
f	f	t	0.48	·	1 .	
f	f	f	0.32			

$$\left(\sum_{X_1} f\right) \langle X_2, \dots, X_j \rangle = f(X_1 = v_1, X_2, \dots, X_j) + \dots + f(X_1 = v_k, X_2, \dots, X_j)$$

Multiplying factors

•Our third operation: factors can be multiplied together.

	Α	В	Val
O 16	• t	t	0.1
$f_1(A,B)$:	t	f	0.9
	f	t	0.2
	f	f	0.8
		•	•

	В	С	Val
0	t	t	0.3
f ₂ (B,C):	€ t	f	0.7
	∦ f	t	0.6
	f	f	0.4

Multiplying factors: Formal

•The **product** of factor $f_1(A, B)$ and $f_2(B, C)$, where B is the variable in common, is the factor $(f_1 \times f_2)(A, B, C)$ defined by:

$$(f_1 \times f_2)(A, B, C) = f_1(A, B)f_2(B, C)$$

Note1: it's defined on all A, B, C triples, obtained by multiplying together the appropriate pair of entries from f_1 and f_2 .

Note2: A, B, C can be sets of variables

Factors Summary

- A factor is a representation of a function from a tuple of random variables into a number.
 - $f(X_1,\ldots,X_i)$.
- We have defined three operations on factors:
 - 1. Assigning one or more variables
 - $f(X_1=v_1, X_2, ..., X_j)$ is a factor on $X_2, ..., X_j$, also written as $f(X_1, ..., X_j)_{X_1=v_1}$ resulting factor is smaller 2. Summing out variables
 - - $(\sum_{X_1} f)(X_2, ..., X_j) = f(X_1 = v_1, ..., X_j) + ... + f(X_1 = v_k, ..., X_j)$
 - > resulting factor is bigger 3. Multiplying factors
 - $(f_1 \times f_2)(A, B, C) = f_1(A, B) f_2(B, C)$

Lecture Overview

Recap Bnets

- Bnets Inference
 - Intro
 - Factors
 - Intro Variable elimination Algo

Variable Elimination Intro

- Suppose the variables of the belief network are X_1, \dots, X_n .
- ✓ Ź)s the query variable
- $Y_1 = v_1, ..., Y_i = v_i$ are the observed variables (with their values)
- $Z_1, ..., Z_k$ are the remaining variables

• What we want to compute:
$$P(Z | Y_1 = v_1, ..., Y_j = v_j)$$

We show before that what we actually pleed to compute is

$$P(Z, Y_1 = v_1, ..., Y_j = v_j)$$

This can be computed in terms of operations between factors (that satisfy the semantics of probability)

Variable Elimination Intro

If we express the joint as a factor,

- We can compute $P(Z, Y_1 = v_1, ..., Y_j = v_j)$ by ??
 - •assigning $Y_1 = v_1, ..., Y_j = v_j$
 - •and summing out the variables $Z_1, ..., Z_k$

$$P(Z, Y_1 = v_1, ..., Y_j = v_j) = \sum_{Z_k} ... \sum_{Z_1} f(Z, Y_1, ..., Y_j, Z_1, ..., Z_k)_{Y_1 = v_1, ..., Y_j = v_j}$$

This is the

Are we done?

Learning Goals for today's class

You can:

 Define factors. Derive new factors from existing factors. Apply operations to factors, including assigning, summing out and multiplying factors.

• (*Minimally*) Carry out **variable elimination** by using factor representation and using the factor operations. Use techniques to simplify variable elimination.

Next Class

Variable Elimination

- The algorithm
- An example

Course Elements

- Two Practice Exercises on Bnet available.
- Assignment 3 is due on Monday!
- Assignment 4 will be available on Wednesday and due on Apr the 8th (last class).