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| ecture Overview

—Recap Semantics of Probability
—Marginalization



Recap: Possible World Semantics

for Probabilities

Probability |>s< a formal measure of subjective uncertainty.

 Random variable and probability distribution
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Joint Distribution and Marginalization
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Why is it called Marginalization?
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| ecture Overview

— Conditional Probability
—Chain Rule



Conditioning
(Conditional Probability)

We model our environment with a set of random
variables.

We have the joint, we can compute the probability of
any formula.

Are we done with reasoning under uncertainty?é-/
What can happen?

Think of a patient showing up at the dentist office.
Does she have a cavity?



Conditioning
(Conditional Probability)

Probabillistic conditioning specifies how to revise
beliefs based on new information.

You build a probabilistic model (for now the joint)
taking all background information into account. This

gives the prior probabillity.
All other information must be conditioned on.

If evidence e Is all of the information obtained
subsequently, the conditional probability P(h|e) of h
given e Is the posterior probability of h.




Conditioning Example

 Prior probability of having a cavity
P(cavity = T)

« Should be revised if you know that there is toothache
P(cavity = T | toothache = T)

* It should be revised again if you were informed that
the probe did not catch anything

P(cavity =T | toothache =T, catch = F)

 What about ? L/

P(cavity =T | sunny =T)



How can we compute P(h@

 What happens in term of possible worlds if we know
the value of a random var (or a set of random vars)?
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Semantics of Conditional Probability
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Semantics of Conditional Prob.: Example

e = (cavity = T)
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Conditional Probability among Random

P(X|Y)=P(X,Y)/P(Y)

Variables : C;i;i\\@ @«\
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Product Rule
 Definition of conditional probablllty
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Chain Rule

* Product rule general form:
P(X, ...,.X,) =
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e Chain rule is derived by successive application of
product rule:
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Chain Rule: Example

P(cavity , toothache, catch) =
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| ecture Overview

—Bayes' Rule
—Independence



Bayes' Rule

* From Product rule :

—P(X,Y)=P(Y) P(X|Y)=P(X) P(Y | X)
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Do you always need to revise your beliefs?

...... when your knowledge of Y’s value doesn'’t affect your belief
In the value of X

DEF. Random variable X is marginal independent of random
variable Y if, for all x, e dom(X), y, € dom(Y),

P(X=xX|Y=y,) =P(X=X)
Consequence:
P(X=X, Y=y =P(X=X | Y=y,) P(Y=Y,) =
=P(X=x) P(Y=y\)



Marginal Independence: Example

A and B are independent iff:
P(AIB) =P(A) orP(B|A)=P(B) orP(A,B)=P(A) P(B)

That is new evidence B (or A) does not affect current
belief in A (or B)

Ex: P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

JPD requiring entries is reduced to two smaller ones (
and )

7 Cavity
decomposes into '3-.Tmthache Catch

Cavity
Catch

Weather

Toothache



Learning Goals for today’s class

YOUu can:

Given a joint, compute distributions over any
subset of the variables

Prove the formula to compute P(h|e)
Derive the Chain Rule and Bayes R

Define Marginallnde en

CPSC 322, Lecture 4 Slide 21



Next Class

« Conditional Independence
» Belief Networks.......

Assignments

o | will post@this evening

« Assignment2&—

« Will post solutions for first two questions
 Generic feedback on programming (see WebCT)

 |f you have more programming questions, office
hours next MW (Jacek)




Plan for this week

Probability 1s a rigorous formalism for uncertain
knowledge

Joint probability distribution specifies probability of
every possible world

Probabilistic queries can be answered by summing
over possible worlds

For nontrivial domains, we must find a way to
reduce the joint distribution size

Independence (rare) and conditional
Independence (frequent) provide the tools



Conditional probability
(irrelevant evidence)

* New evidence may be irrelevant, allowing
simplification, e.g.,
— P(cavity | toothache, sunny) = P(cavity | toothache)

— We say that Cavity Is conditionally independent from
Weather (more on this next class)

* This kind of inference, sanctioned by domain
knowledge, Is crucial in probabilistic inference



