Logic: Domain Modeling /Proofs + Top-Down Proofs

Computer Science cpsc322, Lecture 22 (Textbook Chpt 5.2)

March, 2, 2009

nM

Lecture Overview

- Recap
- Using Logic to Model a Domain (Electrical System)
- Reasoning/Proofs (in the Electrical Domain)
- Top-Down Proof Procedure

Soundness & completeness of proof procedures

A proof procedure X is sound ...

A proof procedure X is complete....

BottomUp for PDCL is

 We proved this in general even for domains represented by thousands of propositions and corresponding KB with millions of definite clauses!

Can you think of a proof procedure for PDCL

A:
$$C_A = \{all \ clauses \ with empty \ bodics \}$$

$$G \subseteq C_A \qquad C_A \subseteq C_{BU}$$

$$B: C_B = \{all \ atoms \ of \ KB\} \qquad b \leftarrow f \land g.$$

$$G \leftarrow e.$$

$$f \leftarrow c \land e.$$
That is sound but not complete?

KB 1/A 6 => 6 = CA => 6 = CBU => KB 1/BU 6

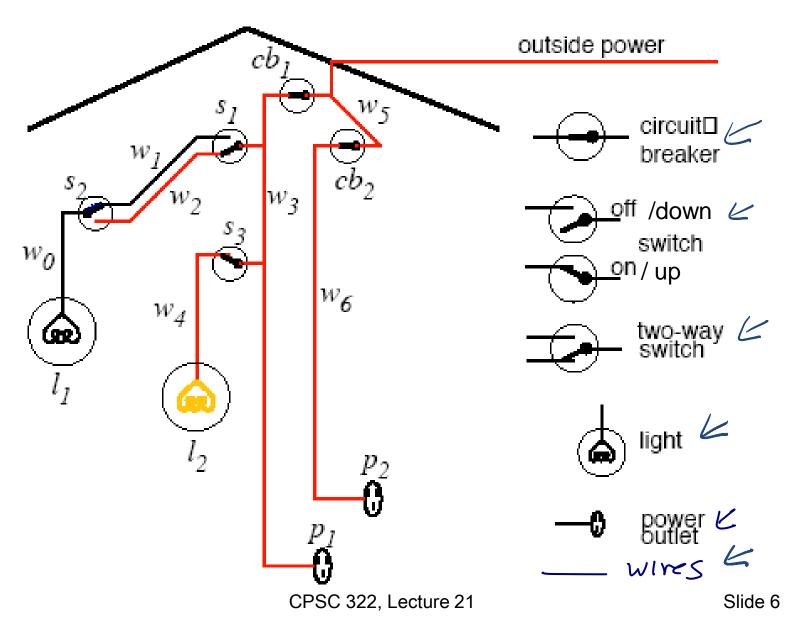
That is complete but not sound?

Slide 4

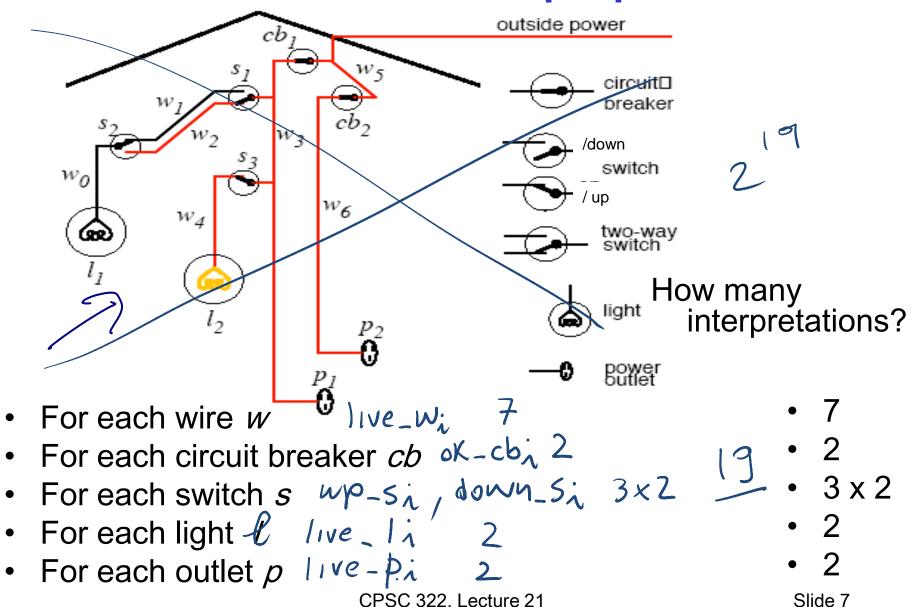
Lecture Overview

- Recap
- Using PDCL Logic to Model a Domain (Electrical System)
- Reasoning/Proofs (in the Electrical Domain)
- Top-Down Proof Procedure

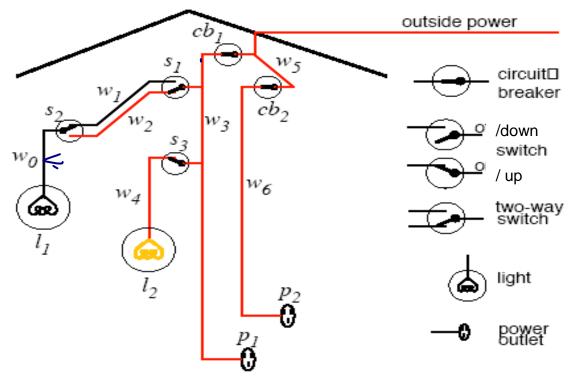
Electrical Environment



Let's define relevant propositions



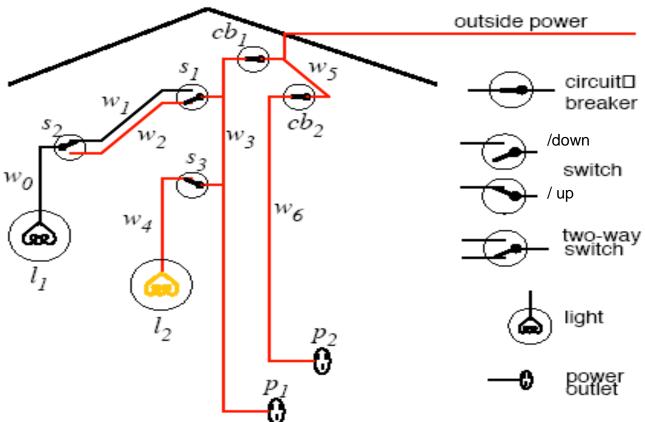
Let's now tell system knowledge about how the domain works



$$live_{-l_{1}} \leftarrow live_{-w_{0}}$$

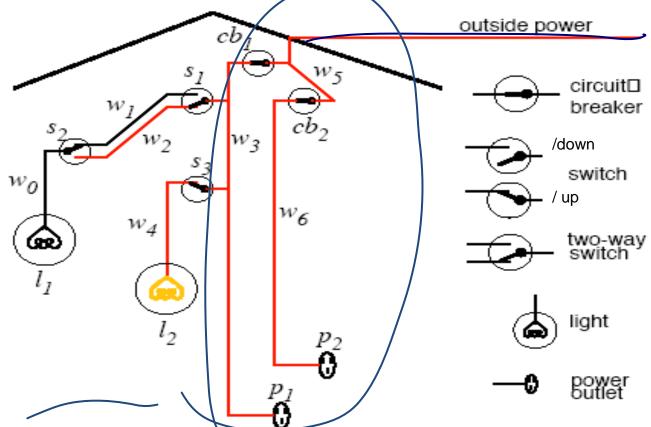
 $live_{-w_{0}} \leftarrow up_{-s_{2}} \wedge live_{-w_{1}}$
 $live_{-w_{0}} \leftarrow down_{-s_{2}} \wedge live_{-w_{2}}$
 $live_{-w_{1}} \leftarrow up_{-s_{1}} \wedge live_{-w_{3}}$

More on how the domain works....



 $live_{-}w_{2} \leftarrow live_{-}w_{3} \land down_{-}s_{1}.$ $live_{-}l_{2} \leftarrow live_{-}w_{4}.$ $live_{-}w_{4} \leftarrow live_{-}w_{3} \land up_{-}s_{3}.$ $live_{-}p_{1} \leftarrow live_{-}w_{3}.$

More on how the domain works....



$$live_{-}w_{3} \leftarrow live_{-}w_{5} \land ok_{-}cb_{1}$$
.

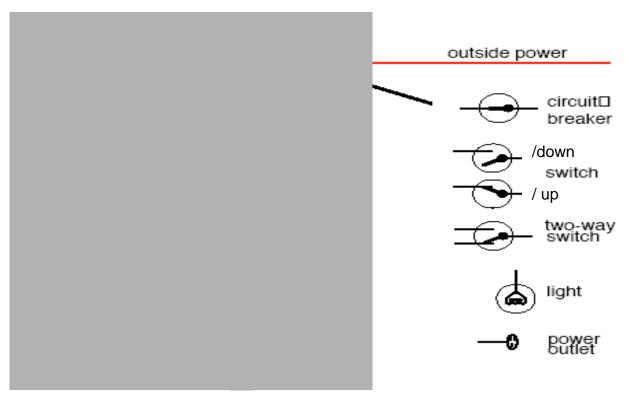
$$live_p_2 \leftarrow live_w_6$$
.

$$live_{-}w_{6} \leftarrow live_{-}w_{5} \land ok_{-}cb_{2}$$
.

$$live_w_5 \leftarrow live_outside$$
.

What else we may know about this domain?

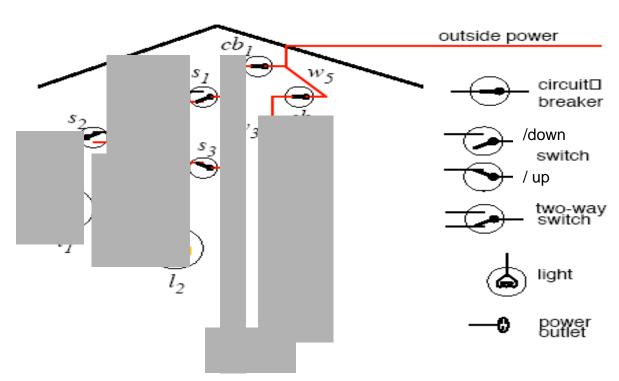
 That some simple propositions are true live_outside.



What else we may know about this domain?

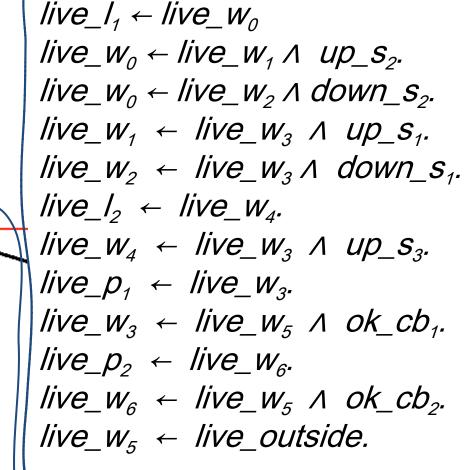
That some additional simple propositions are true

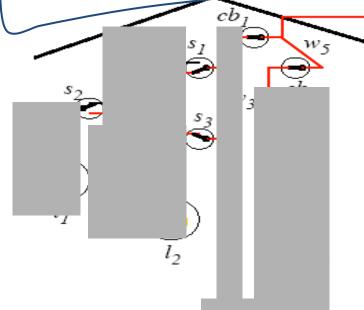
 $down_s_1$. up_s_2 . up_s_3 . ok_cb_1 . ok_cb_2 . $live_outside$.



All our knowledge.....

down_s₁.
up_s₂.
up_s₃.
ok_cb₁.
ok_cb₂.
live_outside





Lecture Overview

- Recap
- Using Logic to Model a Domain (Electrical System)
- Reasoning/Proofs (in the Electrical Domain)
- Top-Down Proof Procedure

What Semantics is telling us

- Our KB (all we know about this domain) is going to be true only in a subset of all possible interpretations
- What is logically entailed by our KB are all the propositions that are true in all those interpretations

 This is what we should be able to derive given a sound and complete proof procedure

If we apply the bottom-up (BU) proof procedure

down_s₁.

up_s₂.

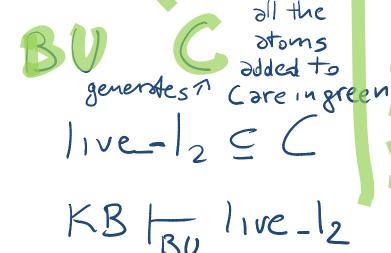
up_s₃.

ok_cb₁.

ok_cb₂.

live_outside

 $live_l_1 \leftarrow live_w_0$ $live_{-}w_{0} \leftarrow live_{-}w_{1} \land up_{-}s_{2}$ live_ $w_0 \leftarrow live_w_2 \land down_s_2$. $live_{W_1} \leftarrow live_{W_3} \land up_{S_1}$ $live_w_2 \leftarrow live_w_3 \land down_s_1$ live_l_ live_w_. $live_{W_4} \leftarrow live_{W_3} \land up_{S_3}$ $live_p_1 \leftarrow live_w_3...$ $live_{W_3} \leftarrow live_{W_5} \land ok_{Cb_1}$ $live_p_2 \leftarrow live_w_6$ $live_{W_6} \leftarrow live_{W_5} \land ok_{cb_2}$ live w₅ ← live outside.

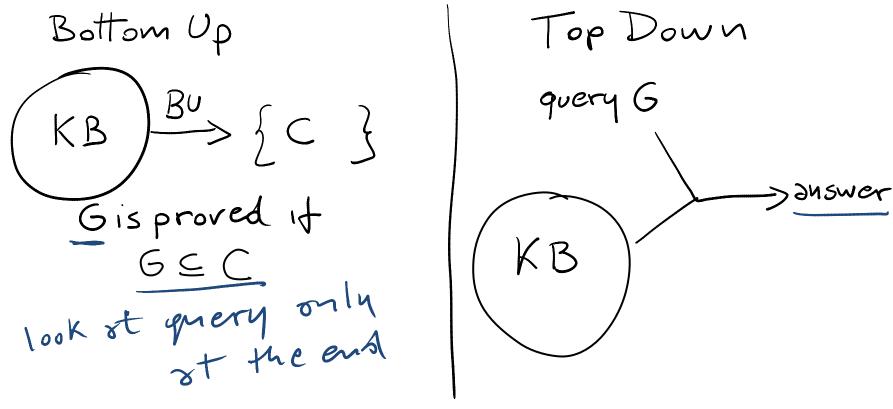


Lecture Overview

- Recap
- Using Logic to Model a Domain (Electrical System)
- Reasoning/Proofs (in the Electrical Domain)
- Top-Down Proof Procedure

Top-down Ground Proof Procedure

Key Idea: search backward from a query *G* to determine if it can be derived from *KB*.



Top-down Proof Procedure: Basic elements

Notation: An answer clause is of the form:

Express query as an answer clause (e.g., query $a_1 \wedge a_2 = a_3 \wedge a_4 + a_4 \wedge a_4 + a_4 \wedge a_4$

$$(a_2 \wedge \dots \wedge a_m)$$

Rule of inference (called SLD Resolution)

Given an answer clause of the form:

and the clause:

$$(a_i) \leftarrow b_1 \wedge b_2 \wedge \dots \wedge b_p$$

You can generate the answer clause

$$yes \leftarrow a_1 \land \dots \land a_{i-1} \land b_1 \land b_2 \land \dots \land b_p \land a_{i+1} \land \dots \land a_m$$

Rule of inference: Examples

Rule of inference (called SLD Resolution)

Given an answer clause of the form:

$$yes \leftarrow a_1 \land a_2 \land \dots \land a_m$$

and the clause:

$$a_i \leftarrow b_1 \land b_2 \land \dots \land b_p$$

You can generate the answer clause

$$yes \leftarrow a_1 \land ... \land a_{i-1} \land b_1 \land b_2 \land ... \land b_p \land a_{i+1} \land ... \land a_m$$

$$b \leftarrow k \wedge f$$

$$b \leftarrow k \wedge f.$$
 $\Rightarrow yes \leftarrow k \wedge f \wedge c$

(successful) Derivations

- An answer is an answer clause with <u>m = 0</u>. That is, it is the answer clause yes ←.
- A (successful) derivation of query "? $q_1 \land ... \land q_k$ " from KB is a sequence of answer clauses such that $\gamma_0, \gamma_1, ..., \gamma_n$ such that
 - \nearrow γ_0 is the answer clause $yes \leftarrow q_1 \land ... \land q_k$
 - γ_i is obtained by resolving γ_{i-1} with a clause in KB, and
 - y_n is an answer. $yes \leftarrow$
- An unsuccessful derivation....
 yes < 5 1 5

Example: derivations

$$\begin{array}{c}
a \leftarrow e \wedge f. \\
\hline
c \leftarrow e. \\
f \leftarrow i \wedge e.
\end{array}$$

$$\frac{a \leftarrow b \land c.}{d \leftarrow k.}$$

$$f \leftarrow c.$$

$$b \leftarrow k \wedge f$$
.

 e .

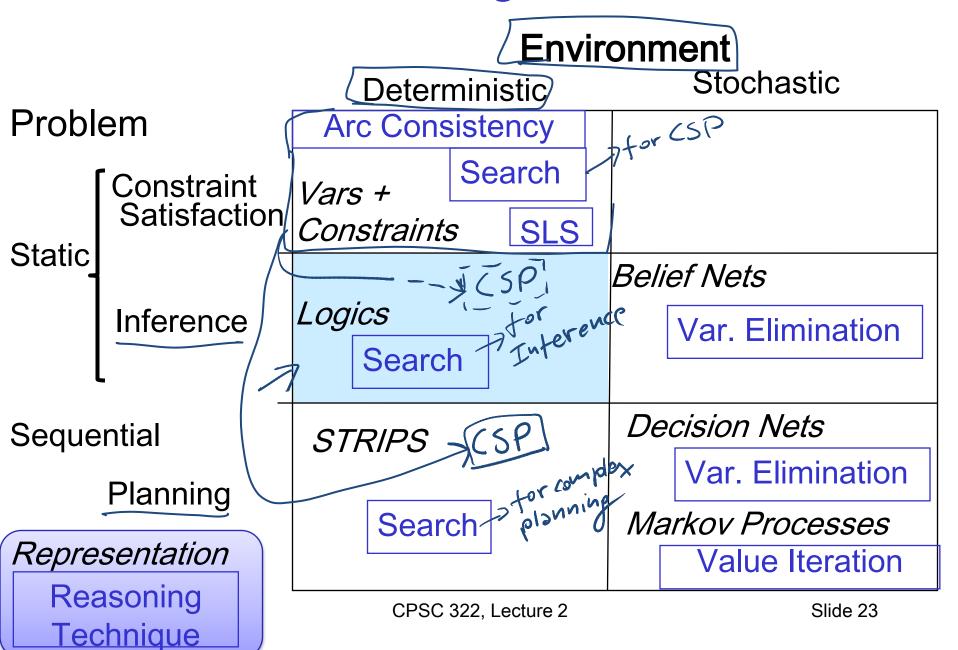
 $j \leftarrow C$.

Query: a (two ways)

$$yes \leftarrow a.$$
 $yes \leftarrow e \land f$
 $yes \leftarrow e \land f$
 $yes \leftarrow e \land f$
 $yes \leftarrow f$
 $yes \leftarrow f$
 $yes \leftarrow f$

Query: b (k, f different order) $yes \leftarrow b.$

Course Big Picture



Standard Search vs. Specific R&R systems

Constraint Satisfaction (Problems):

- State: assignments of values to a subset of the variables
- Successor function: assign values to a "free" variable
- Goal test: set of constraints
- Solution: possible world that satisfies the constraints
- Heuristic function: none (all solutions at the same distance from start)

Planning:

- State possible world
- Successor function states resulting from valid actions
- Goal test assignment to subset of vars
- Solution sequence of actions
- Heuristic function empty-delete-list (solve simplified problem)

Logical Inference

- State answer clause
- Successor function states resulting from substituting one atom with all the clauses of which it is the head
- Goal test empty answer clause

- Solution start state
- Heuristic function number of atoms in given state

Learning Goals for today's class

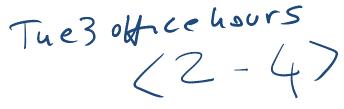
You can:

Model a relatively simple domain with propositional definite clause logic (PDCL)

Define/read/write/trace/debug the TopDown proof procedure

Midterm: this Wed March 4

SAME ROOM - 1.5 hours



~10 short questions (~6pts each) + 2 problems (~20pts each)

- Study: textbook and inked slides
- Work on all practice exercises
- Work-on/Study the posted learning goals, review questions (I may even reuse some verbatim ☺), two problems from previous offering (solutions also posted ☺)