Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs

Computer Science cpsc322, Lecture 20

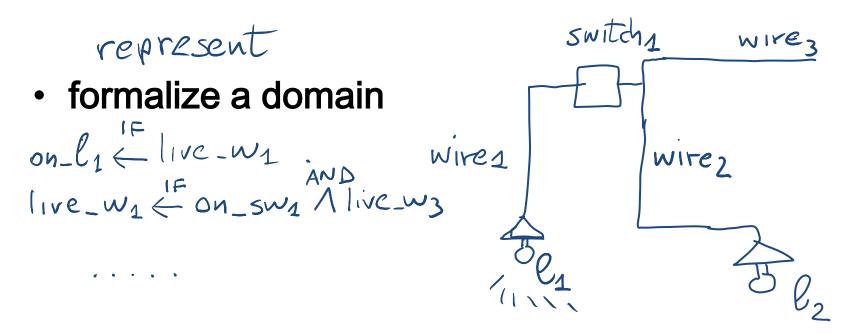
(Textbook Chpt 5.2)

February, 25, 2009

Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic: Semantics
- PDCL: Bottom-up Proof

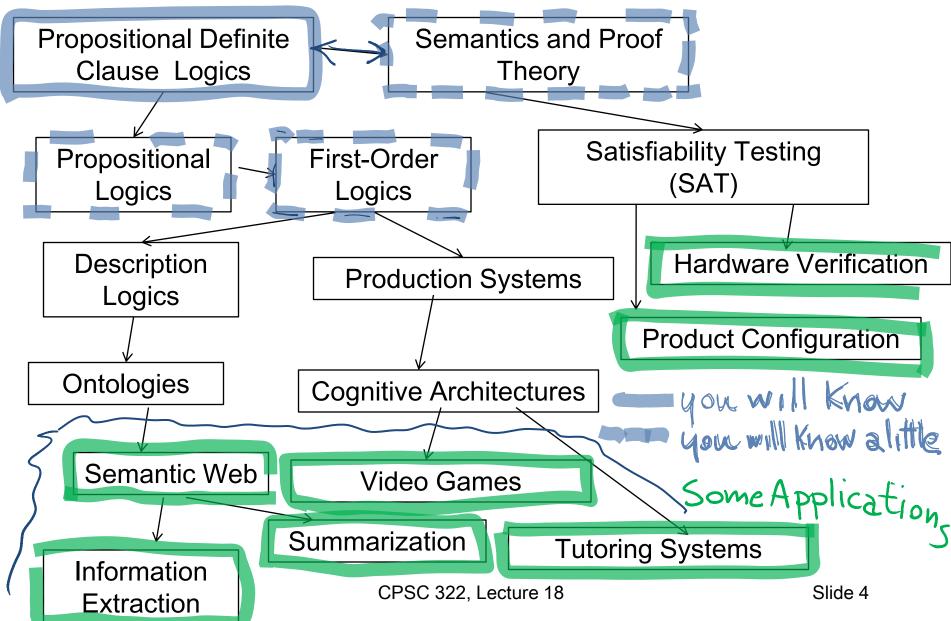
Logics as a R&R system



reason about it

If the agent Knows ON-SW1 and live_w3 It should be able to infer on-l1

Logics in AI: Similar slide to the one for planning

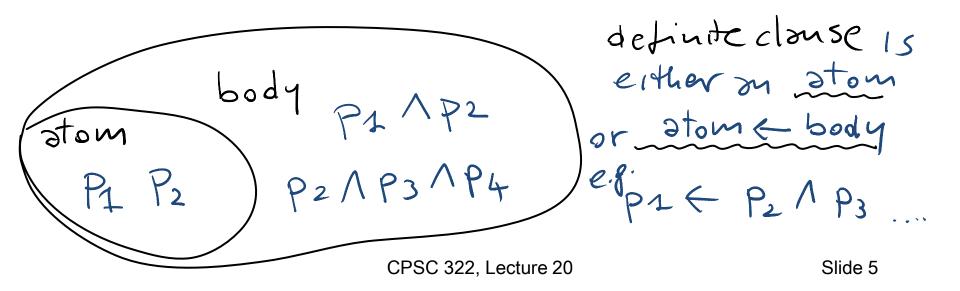


Propositional (Definite Clauses) Logic: Syntax

We start from a restricted form of Prop. Logic:

Only two kinds of statements

- that a proposition is true
- that a proposition is true if one or more other propositions are true



Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic: Semantics
- PDCL: Bottom-up Proof

Propositional Definite Clauses Semantics: Interpretation

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

stom combe T/F

Definition (interpretation) An interpretation *I* assigns a truth value to each atom.

If your domain can be represented by four atoms (propositions):

P9rs 24 interpretations

$$TTTTFF$$

So an interpretation is just a ... possible world .

PDC Semantics: Body

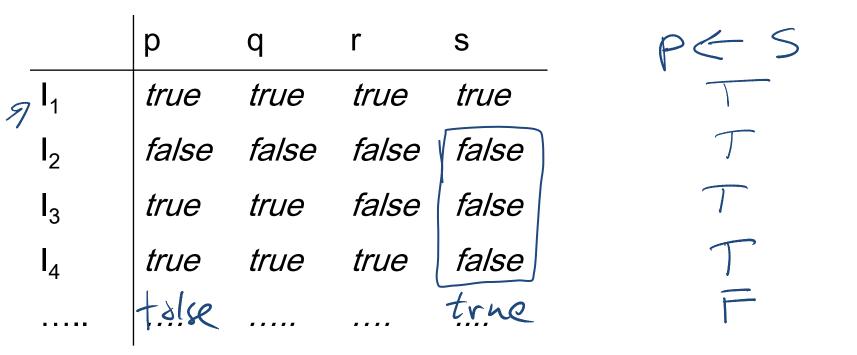
We can use the interpretation to determine the truth value of clauses and knowledge bases:

Definition (truth values of statements): A body $b_1 \wedge b_2$ is true in *I* if and only if b_1 is true in *I* and b_2 is true in *I*.

		-	r		01 4 1 5
\overline{a} \mathbf{I}_1	true	true	true	true	
I_2	true false true true true	false	false	false	F
l ₃	true	true	false	false	
I_4	true	true	true	false	
۱ ₅	true	true	false	true	Ē
	Slide 8				

PDC Semantics: definite clause

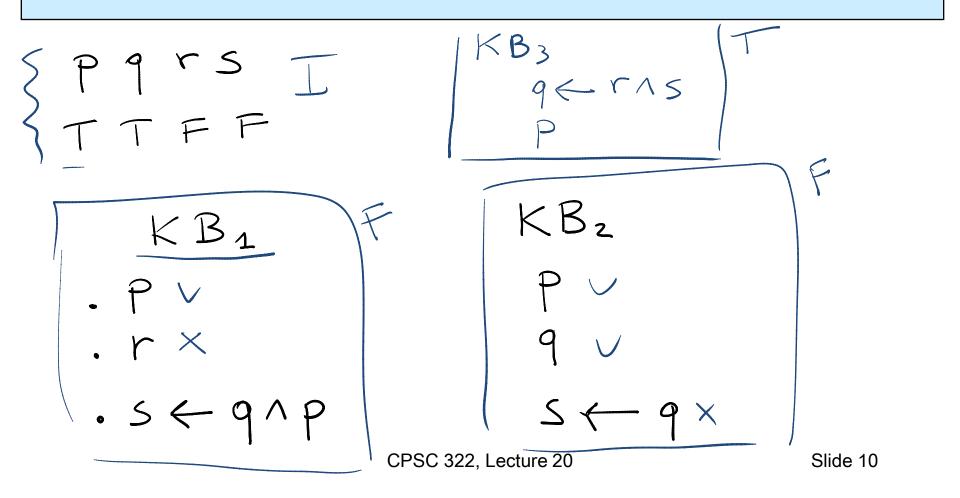
Definition (truth values of statements cont'): A rule $h \leftarrow b$ is false in *I* if and only if *b* is true in *I* and *h* is false in *I*.



In other words: *"if b is true I am claiming that h must be true, otherwise I am not making any claim"* CPSC 322, Lecture 20 Slide 9

PDC Semantics: Knowledge Base

Definition (truth values of statements cont'): A knowledge base *KB* is true in *I* if and only if every clause in *KB* is true in *I*.



Models

Definition (model) A model of a set of clauses (a KB) is an interpretation in which all the clauses are *true*.

Example: Models									
					$\int p \leftarrow q. \leqslant$				
				K	$B = \begin{cases} p \leftarrow q. \leqslant \\ \underline{q.} \\ r \leftarrow s. \end{cases}$				
		р	q	-	-				
2	I ₁	true	true	true	true <i>M</i> Which interpretations are				
~ •	I ₂	false	faise	false	true M Which interpretations are models? false $\times q_{s} + e^{1} \leq e^{1}$				
	I ₃ (true	true	false	false M				
	I ₄	true	true	true	false M				
	I 5	true	true	false	true × r ← s is talse				

Logical Consequence

Definition (logical consequence) If *KB* is a set of clauses and *G* is a conjunction of atoms, *G* is a logical consequence of *KB*, written $\underline{KB \models G}$, if *G* is *true* in every model of *KB*.

- we also say that *G* logically follows from *KB*, or that *KB* entails *G*.
- In other words, $KB \models G$ if there is no interpretation in which KB is *true* and G is *false*.

Example: Logical Consequences

	р	q	r	S				
I ₁	true	true	true	<i>true <</i> - /²				
I ₂	true	true	true	false [^]	7 $KB = \{q.$			
l ₃	true	true	false	false /	$1 \qquad (r \leftarrow s.$			
I_4	true	true	false	true				
I_5	false	true	true	true	2 ⁴ =16 interpretations			
I ₆	false	true	true	_false	in total			
I_7	f alse	true	false	false	ONLY 3 are models			
l ₈	f alse	true	false	true	remaining cannot be			
				the	remaining cannot be nodels because quistalse			
Which of the following is true?								
 KB ⊨ q, KB ⊨ p, KB ⊭ s, KB ⊭ r 								

CPSC 322, Lecture 20

Slide 14

Lecture Overview

- Recap: Logic intro
- Propositional Definite Clause Logic: Semantics
- PDCL: Bottom-up Proof

One simple way to prove that G logically you have to the 2" check all the 2" interpretations! follows from a KB

- Collect all the models of the KB
- Verify that G is true in all those models

Any problem with this approach? intractable time complexity

The goal of proof theory is to find proof procedures that allow us to prove that a logical formula follows form a KB avoiding the above

Soundness and Completeness

- If I tell you I have a proof procedure for PDCL
- What do I need to show you in order for you to trust my procedure? that it is sound G & complete
 - KB ⊢ G means g can be derived by my proof procedure from KB.
 - Recall $KB \models G$ means g is true in all models of KB.

Definition (soundness)

A proof procedure is sound if $KB \vdash G$ implies $KB \models G$.

Definition (completeness)

A proof procedure is complete if $KB \models G$ implies $KB \vdash G$.

CPSC 322, Lecture 20

Bottom-up Ground Proof Procedure

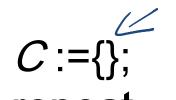
One rule of derivation, a generalized form of *modus ponens*:

If " $h \leftarrow b_1 \land \dots \land b_m$ " is a clause in the knowledge base, and each b_i has been derived, then <u>h</u> can be derived.

You are forward chaining on this clause. (This rule also covers the case when *m=0*.)

Bottom-up proof procedure

 $KB \vdash G$ if $\underline{G} \subseteq C$ at the end of this procedure:



repeat

select clause " $h \leftarrow b_1 \land \dots \land b_m$ " in *KB* such that $\underline{b_i} \in C$ for all *i*, and $h \notin C$; $C := C \cup \{h\}$ until no more clauses can be selected.

Learning Goals for today's class

You can:

- Verify whether an interpretation is a model of a PDCL KB.
- Verify when a conjunction of atoms is a $\ltimes B \not\models G$ logical consequence of a knowledge base.
- Define/read/write/trace/debug the bottom-up proof procedure.

Next class

(still section 5.2)

- Soundness and Completeness of Bottom-up Proof Procedure
- Using PDC Logic to model the electrical domain
- Reasoning in the electrical domain