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Lecture Overview

• Recap SLS

• SLS variants
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Stochastic Local Search

• Key Idea: combine greedily improving moves with 

randomization

• As well as improving steps we can allow a “small 

probability” of:

• Random steps: move to a random neighbor.

• Random restart: reassign random values to all 

variables.

• Stop when

• Solution is found (in vanilla CSP …………………………)

• Run out of time (return best solution so far)

• Always keep best solution found so far
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Runtime Distributions

100%

time

% of solved runs

Which one would you use if you could wait t = t’ ?



CPSC 322, Lecture 16 Slide 5

Lecture Overview

• Recap SLS

• SLS variants

• Tabu lists

• Simulated Annealing

• Beam search

• Genetic Algorithms
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Tabu lists

• To avoid  search to

• Immediately going back to previously visited candidate

• To prevent cycling 

• Maintain a tabu list of the k last nodes visited.

• Don't visit a poss. world that is already on the tabu list.

• Cost of this method depends on…..
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Simulated Annealing

• Annealing: a metallurgical process where metals 

are hardened by being slowly cooled.

• Analogy: start with a high ``temperature'': a high 

tendency to take random steps

• Over time, cool down: more likely to follow the scoring 

function

• Temperature reduces over time, according to an 

annealing schedule

• Key idea: Change the degree of randomness….
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Simulated Annealing: algorithm

Here's how it works (for maximizing):
• You are in node n. Pick a variable at random and a 

new value at random. You generate n'

• If it is an improvement i.e.,                          , adopt it.

• If it isn't an improvement, adopt it probabilistically 

depending on the difference and a temperature 

parameter, T.

• we move to n' with probability e(h(n')-h(n))/T
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• If it isn't an improvement, adopt it probabilistically 

depending on the difference and a temperature 

parameter, T.

• we move to n' with probability e(h(n')-h(n))/T
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Properties of simulated annealing search

One can prove: If T decreases slowly enough, then 

simulated annealing search will find a global 

optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.
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Lecture Overview

• Recap SLS

• SLS variants

• Simulated Annealing

• Population Based

Beam search

Genetic Algorithms
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Population Based SLS

Often we have more memory than the one required 

for current node (+ best so far + tabu list)

Key Idea: maintain a population of k individuals

• At every stage, update your population.

• Whenever one individual is a solution, report it.

Simplest strategy: Parallel Search

• All searches are independent

• Like k restarts
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Population Based SLS: Beam Search
Non Stochastic

• Like parallel search, with k individuals, but you 

choose the k best out of all of the neighbors.

• Useful information is passed among the k parallel 

search thread

• Troublesome case: If one individual generates several 

good neighbors and the other k-1 all generate bad 

successors….



CPSC 322, Lecture 16 Slide 14

Population Based SLS: Stochastic 

Beam Search

• Non Stochastic Beam Search may suffer from 

lack of diversity among the k individual (just a more 

expensive hill climbing)

• Stochastic version alleviates this problem:

• Selects the k individuals at random

• But probability of selection proportional to their value
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Stochastic Beam Search: Advantages

• It maintains diversity in the population.

• Biological metaphor (asexual reproduction): 

each individual generates  “mutated” copies of itself (its 

neighbors)

The scoring function value reflects the fitness of the 

individual

the higher the fitness the more likely the individual will 

survive (i.e., the neighbor will be in the next generation)
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Lecture Overview

• Recap SLS

• SLS variants

• Simulated Annealing

• Population Based

Beam search

Genetic Algorithms
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Population Based SLS: Genetic Algorithms
• Start with k randomly generated individuals 

(population)

• An individual is represented as a string over a finite 
alphabet (often a string of 0s and 1s)

• A successor is generated by combining two parent 
individuals (loosely analogous to how DNA is spliced in 
sexual reproduction)

• Evaluation/Scoring function (fitness function). Higher 
values for better individuals.

• Produce the next generation of individuals by 
selection, crossover, and mutation
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Genetic algorithms: Example

Representation and fitness function

State: string over finite alphabet

Fitness function: higher value 

better states
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Genetic algorithms: Example

24/(24+23+20+11) = 31%

23/(24+23+20+11) = 29% etc

Selection: common strategy, probability of 

being chosen for reproduction is directly 

proportional to fitness score
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Genetic algorithms: Example

Reproduction: cross-over and mutation
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Genetic Algorithms: Conclusions

• Their performance is very sensitive to the choice 

of state representation and fitness function

• Extremely slow (not surprising as they are 

inspired by evolution!)
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Learning Goals for today’s class

You can:

• Implement a tabu-list. 

• Implement the simulated annealing algorithm 

• Implement population based SLS algorithms: 
• Beam Search 

• Genetic Algorithms. 

• Explain pros and cons
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Modules we'll cover in this course: R&Rsys

Environment

Problem

Inference

Planning

Deterministic Stochastic

Search

Arc Consistency

Search

Search
Value Iteration

Var. Elimination

Constraint 
Satisfaction

Logics

STRIPS

Belief Nets

Vars + 
Constraints

Decision Nets

Markov Processes

Var. Elimination

Static

Sequential

Representation

Reasoning

Technique

SLS
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Next class

Start Planning (Chp  11)
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Feedback summary    

• Assignments (prog. , unclear) 7 1 7 (0)

• TAs 0 0 1 (-1)

• Textbook 6 2 2 (+4)

• Lectures (more interactive) 5 5 1 (+4)

• Practice Exercises (one per lecture) 6 - 1 (+5)

• Course Topics 6 1 - (+6)

• Learning Goals 6 - - (+6)

• Slides (hard to read) 10 1 3 (+7)

• AIspace 13 1 1    (+12)

• Exams…
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What is coming next?

How to select and organize a sequence of actions to 

achieve a given goal…

………………
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Systematically solving CSPs: Summary

• Build Constraint Network

• Apply Arc Consistency 

• One domain is empty 

• Each domain has a single value 

• Some domains have more than one value 

• Apply Depth-First Search with Pruning

• Split the problem in a number of disjoint cases

• Apply Arc Consistency to each case
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CSPs summary

Find a single variable assignment that satisfies all of our 

constraints (atemporal)

• Systematic Search approach (search space …..?)

• Constraint network support 

 inference e.g., Arc Consistency (can tell you if solution does not exist)

Decomposition

• Heuristic Search (degree, min-remaining)

• (Stochastic) Local Search (search space …..?)

• Huge search spaces and highly connected constraint network 

but solutions densely distributed 

• No guarantee to find a solution (if one exists).

• Unable to show that no solution exists


