Stochastic Local Search Variants

Computer Science cpsc322, Lecture 16
(Textbook Chpt 4.8)

February, 9, 2009

M

Lecture Overview

Recap SLS

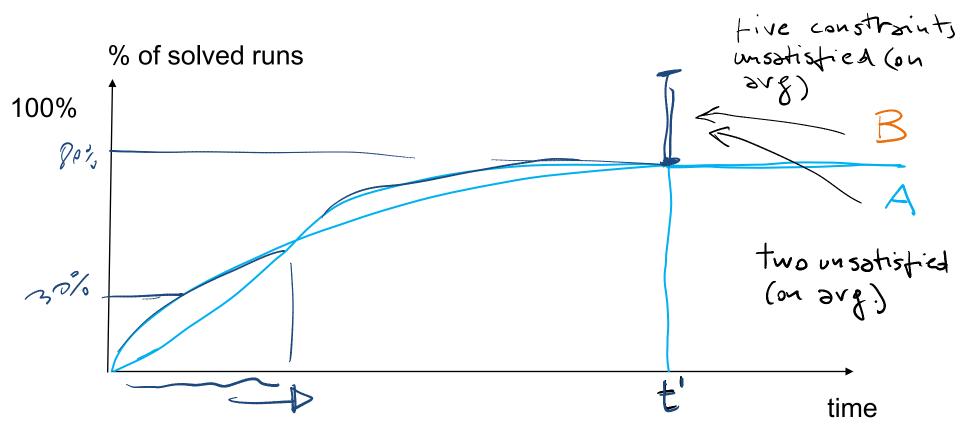
SLS variants

Stochastic Local Search

MIN 48X

- Key Idea: combine greedily improving moves with randomization
 - As well as improving steps we can allow a "small probability" of:
 - Random steps: move to a random neighbor.
 Pandom restant
 - Random restart: reassign random values to all $\angle 1\%$ $\angle 2$ variables.
 - Always keep best solution found so far
 - Stop when
 - Solution is found (in vanilla CSP satisfying all C)
 - Run out of time (return best solution so far)

Runtime Distributions



Which one would you use if you could wait t = t'?

you should look at the quality of the answers on the unsolved problems. In pure CSP # of unsatisfied constraints so use A CPSC 322, Lecture 15

Lecture Overview

- Recap SLS
- SLS variants
 - Tabu lists
 - Simulated Annealing
 - Beam search
 - Genetic Algorithms

Tabu lists

- To avoid search to
 - Immediately going back to previously visited candidate
 - To prevent cycling
- Maintain a tabu list of the k last nodes visited.
 - Don't visit a poss. world that is already on the tabu list.

Cost of this method depends on.....

Simulated Annealing

- Key idea: Change the degree of randomness....
- Annealing: a metallurgical process where metals are hardened by being slowly cooled.
 - Analogy: start with a high ``temperature": a high tendency to take random steps
 - Over time, cool down: more likely to follow the scoring function
- Temperature reduces over time, according to an annealing schedule

Simulated Annealing: algorithm

Here's how it works (for maximizing):

- You are in node n Pick a variable at random and a new value at random. You generate n'
- If it is an improvement i.e., h(h') > h(h), adopt it.
- If it isn't an improvement, adopt it probabilistically depending on the difference and a temperature parameter, T. h(n) > h(n') - h(n') - h(n') = 0• we move to n' with probability $e^{(h(n')-h(n))/T}$

• If it <u>isn't an improvement</u>, adopt it probabilistically depending on the difference and a temperature parameter, T. $h(n) > h(n') \Rightarrow h(n') - h(n) < 0$

 we move to n' with probability - The higher T the higher is prob - The higher the ofference (its absolute value)

the smallow in for a given T

CPSC 322, Lecture 16

Slide 9

Properties of simulated annealing search

One can prove: If <u>T</u> decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.

Lecture Overview

- Recap SLS
- SLS variants
 - Simulated Annealing
 - Population Based
 - √ Beam search
 - √ Genetic Algorithms

Population Based SLS

Often we have more memory than the one required for current node (+ best so far + tabu list)

Key Idea: maintain a population of *k* individuals

- At every stage, update your population.
- Whenever one individual is a solution, report it.

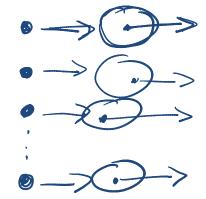
Simplest strategy: Parallel Search

- All searches are independent
- Like k restarts

 but more memory in

 No reason to use it

X-2055; WS



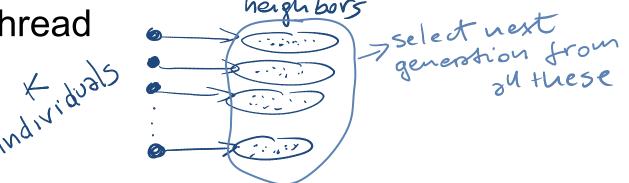
Population Based SLS: Beam Search

Non Stochastic

• Like parallel search, with *k* individuals, but you choose the *k* best out of all of the neighbors.

Useful information is passed among the k parallel
 Neighbors

search thread



• Troublesome case: If one individual generates several good neighbors and the other k-1 all generate bad successors....

the next generation will comprise very similar individuals i

Population Based SLS: Stochastic Beam Search

- Non Stochastic Beam Search may suffer from lack of diversity among the k individual (just a more expensive hill climbing)
- Stochastic version alleviates this problem:
 - Selects the k individuals at random
 - But probability of selection proportional to their value

m neighbors
$$\{N_1...N_m\}$$

h: scoring function

Probability of scleeding (N_a) =

CPSC 322, Lecture 16

 $\frac{\partial c}{\partial x} = \frac{\partial c}{$

Stochastic Beam Search: Advantages

- It maintains diversity in the population.
- Biological metaphor (asexual reproduction):
 - ✓ each individual generates "mutated" copies of itself (its neighbors)
 - ✓ The scoring function value reflects the fitness of the individual
 - √the higher the fitness the more likely the individual will survive (i.e., the neighbor will be in the next generation)

Lecture Overview

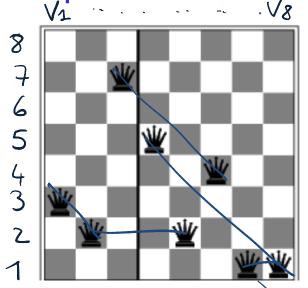
- Recap SLS
- SLS variants
 - Simulated Annealing
 - Population Based
 - √ Beam search
 - √ Genetic Algorithms

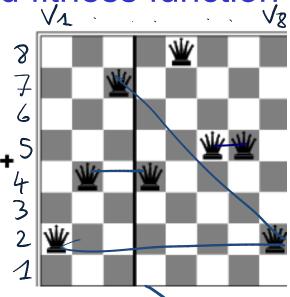
Population Based SLS: Genetic Algorithms

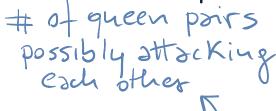
- Start with k randomly generated individuals (population)
- An individual is represented as a string over a finite alphabet (often a string of 0s and 1s)
- A successor is generated by combining two parent individuals (loosely analogous to how DNA is spliced in sexual reproduction)
- Evaluation/Scoring function (fitness function). Higher values for better individuals.
- Produce the next generation of individuals by selection, crossover, and mutation

Genetic algorithms: Example & queen

Representation and fitness function







State: string over finite alphabet

24748552

24

(28-4)

Fitness function: higher value

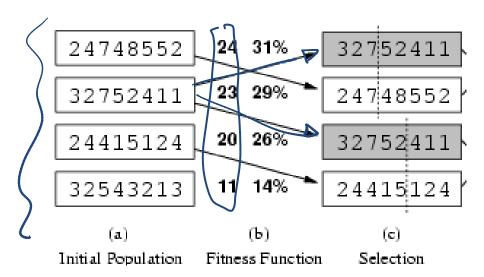
better states. # queen pairs not stacking each other

32752411

(28-5)

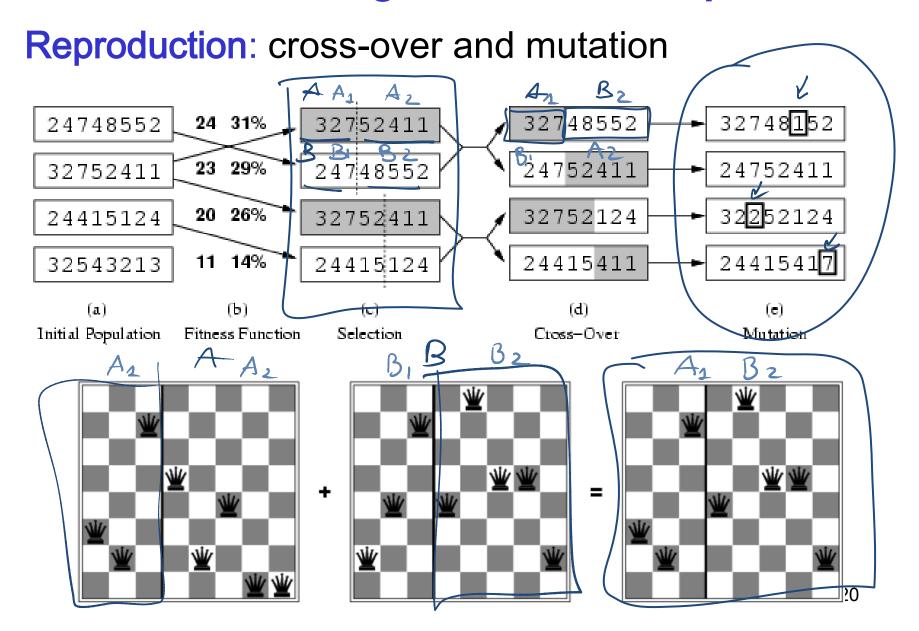
Genetic algorithms: Example

Selection: common strategy, probability of being chosen for reproduction is directly proportional to fitness score



$$\ge 23/(24+23+20+11) = 29\%$$
 etc

Genetic algorithms: Example



Genetic Algorithms: Conclusions

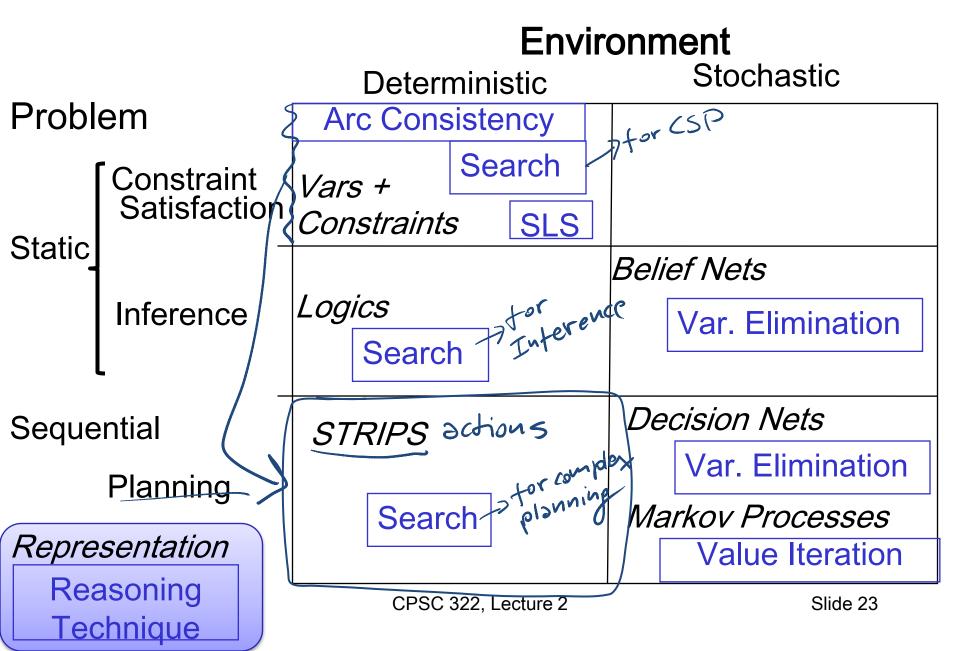
- Their performance is very sensitive to the choice of state representation and fitness function
- Extremely slow (not surprising as they are inspired by evolution!)

Learning Goals for today's class

You can:

- Implement a tabu-list.
- Implement the simulated annealing algorithm
- Implement population based SLS algorithms:
 - Beam Search
 - Genetic Algorithms.
 - Explain pros and cons

Modules we'll cover in this course: R&Rsys



Next class

Start Planning (Chp 11)

Feedback summary

•	Assignments (prog., unclear)

$$\mathbf{0}$$

5

5

(+5)

- Lectures (more interactive)
- Practice Exercises (one per lecture)
 - Course Topics
- **Learning Goals**
 - (hard to read)
 - Slides
- **Alspace**
- Exams...

- (+6)
- - (+6)
- 10 (+7)
- 13
- lots of sample PSC 322, Lecture 13

What is coming next?

How to select and organize a sequence of actions to achieve a given goal...

.

Systematically solving CSPs: Summary

- **Build Constraint Network**
- Apply Arc Consistency
 - One domain is empty → no solution
- → Each domain has a single value → vulque solution
 - Some domains have more than one value →

or may tast be a solutional

- Apply Depth-First Search with Pruning
- Split the problem in a number of disjoint cases
 - Apply Arc Consistency to each case

CSPs summary

Find a single variable assignment that satisfies all of our constraints (atemporal)

- Systematic Search approach (search space?)
 Constraint network support 2/3
 - - ✓ inference e.g., Arc Consistency (can tell you if solution does not exist)
 - ✓ Decomposition
 - Heuristic Search (degree, min-remaining)
- (Stochastic) Local Search (search space?)
- Huge search spaces and highly connected constraint network but solutions densely distributed
 - No guarantee to find a solution (if one exists).
 - Unable to show that no solution exists

CPSC 322. Lecture 16