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Stochastic Local Search
Computer Science cpsc322, Lecture 15

(Textbook Chpt 4.8)

February, 6, 2009



Announcements

• Thanks for the feedback, we’ll discuss it on Mon

• Assignment-2 on CSP will be out tonight 

(programming!)
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Lecture Overview

• Recap Local Search in CSPs

• Stochastic Local Search (SLS)

• Comparing SLS algorithms
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Local Search: Summary

• A useful method in practice for large CSPs

• Start from a possible world

• Generate some neighbors ( “similar” possible worlds)

• Move from current node to a neighbor, selected to 

minimize/maximize a scoring function which combines:

 Info about how many constraints are violated

 Information about the cost/quality of the solution (you want the 

best solution, not just a solution)
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Problems with these strategy…

(Plateau)

…called Greedy Descent when selecting the neighbor which 

minimizes a scoring function.

Hill Climbing when selecting the neighbor which maximizes a 

scoring function.
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Lecture Overview

• Recap Local Search in CSPs

• Stochastic Local Search (SLS)

• Comparing SLS algorithms
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Stochastic Local Search

GOAL: We want our local search 

• to be guided by the scoring function

• Not to get stuck in local maxima/minima, plateaus etc.

• SOLUTION: We can alternate 
a) Hill-climbing steps

b) Random steps: move to a random neighbor.

c) Random restart: reassign random values to all 
variables.
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Two extremes versions

hill climbing with 

random steps

Two 1-dimensional search spaces; step right or left:

Stochastic local search typically involves both kinds of 

randomization, but for illustration let’s consider

hill climbing with 

random restart
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Random Steps (Walk)

Let’s assume that neighbors are generated as
• assignments that differ in one variable's value

How many neighbors there are given n variables with 
domains with d values?

One strategy to add randomness to the 
selection variable-value pair. 
Sometimes choose the pair

• According to the scoring function

• A random one

E.G in 8-queen

• How many neighbors?

• ……..
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Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

• Sometimes select variable:
1. that participates in the largest number of conflicts.

2. at random, any variable that participates in some conflict.

3. at random

• Sometimes choose value
a) That minimizes # of conflicts

b) at random

0

2

2

3

3

2

3Aispace

2 a: Greedy Descent with 
Min-Conflict Heuristic
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Successful application of SLS

• Scheduling of Hubble Space Telescope: 

reducing time to schedule 3 weeks of 

observations:

from one week to around 10 sec.
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(Stochastic) Local search advantage: 

Online setting
• When the problem can change (particularly 

important in scheduling)

• E.g., schedule for airline: thousands of flights and 

thousands of personnel assignment

• Storm can render the schedule infeasible

• Goal: Repair with minimum number of changes

• This can be easily done with a local search starting 

form the current schedule

• Other techniques usually:

• require more time 

• might find solution requiring many more changes
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SLS:Limitations

• Typically no guarantee they will find a solution 

even if one exists

• Not able to show that no solution exists
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Lecture Overview

• Recap Local Search in CSPs

• Stochastic Local Search (SLS)

• Comparing SLS algorithms
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Comparing Stochastic Algorithms: Challenge

• Summary statistics, such as mean run time, median run 

time, and mode run time don't tell the whole story

• What is the running time for the runs for which an algorithm never 
finishes (infinite? stopping time?)

100%

runtime / steps
0 10 20 30 …..

% of solved runs
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First attempt….

• How can you compare three algorithms when

A. one solves the problem 30% of the time very quickly but doesn't 

halt for the other 70% of the cases

B. one solves 60% of the cases reasonably quickly but doesn't solve 

the rest

C. one solves the problem in 100% of the cases, but slowly?

100%

Mean runtime / steps

of solved runs

% of solved runs
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Runtime Distributions are even more 

effective
Plots runtime (or number of steps) and the proportion (or 

number) of the runs that are solved within that runtime.

• log scale on the x axis is commonly used
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What are we going to look at in AIspace

When selecting a variable first 
followed by a value:

• Sometimes select variable:
1. that participates in the 

largest number of conflicts.

2. at random, any variable that 
participates in some conflict.

3. at random

• Sometimes choose value
a) That minimizes # of conflicts

b) at random

AIspace terminology

Random sampling

Random walk

Greedy Descent

Greedy Descent Min 
conflict

Greedy Descent with 
random walk

Greedy Descent with 
random restart…..
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Learning Goals for today’s class

You can:

• Implement SLS with

• random steps (1-step, 2-step versions)

• random restart

• Compare SLS algorithms with runtime 

distributions
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Next Class

• More SLS variants

• Finish CSPs

• Start planning

Assign-2

• Will be out by tonight

• Assignments will be weighted: 

A0 (12%), A1…A4 (22%) each


