Constraint Satisfaction Problems (CSPs)

Introduction

Computer Science cpsc322, Lecture 11

(Textbook Chpt 4.0 – 4.2)

January, 28, 2009

Announcements

Only one more week for assignment1

- Search wrap-up
 - Go back to learning goals (end of slides)
 - Make sure you understands the inked slides
 - More details or different examples on textbook
 - Work on the practice exercises
 - If still confused, come to office hours

Lecture Overview

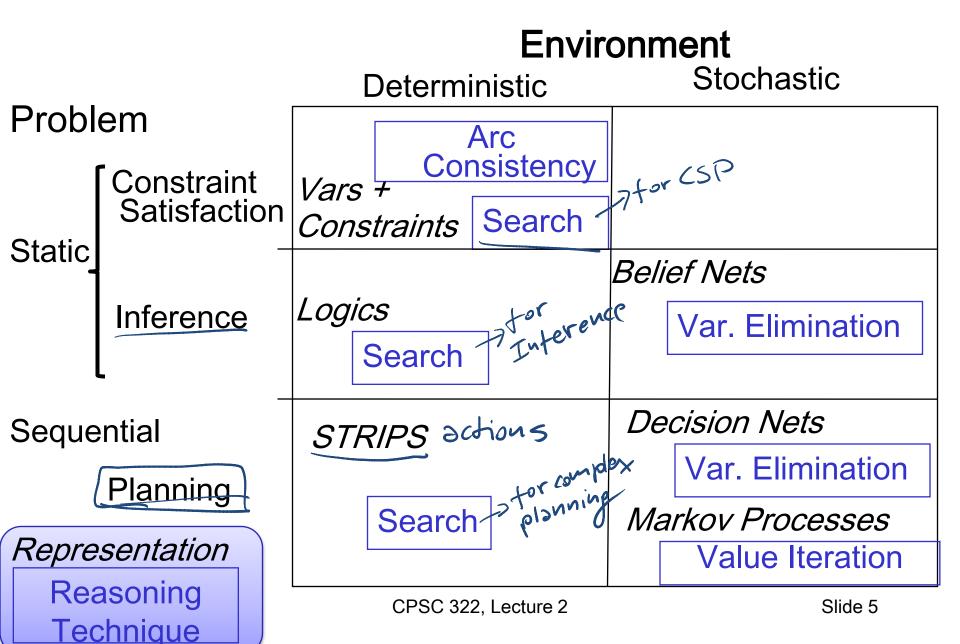
- Generic Search vs. Constraint Satisfaction Problems
- Variables
- Constraints
- CSPs

Standard Search

To learn about **search** we have used it as the *reasoning strategy* for a **simple goal-driven planning agent**, but...

2-puzzle Marina-Problem Solution: state to goal

Standard search problem: An agent can solve a problem by searching in a space of states


• state is a "black box" – any arbitrary data structure that supports three problem-specific routines

gost (n)
heuriste (n)

Successor/neighbor(u)

CPSC 322. Lecture 11

Modules we'll cover in this course: R&Rsys

Standard Search vs. Specific R&R systems

Constraint Satisfaction (Problems):

- State • Success
 • Goal test
 - Successor function

Planning:

- State
- Successor function
- Goal test
- Solution

Inference

- State
- Successor function
- Goal test
- Solution

tollowing week

Lecture Overview

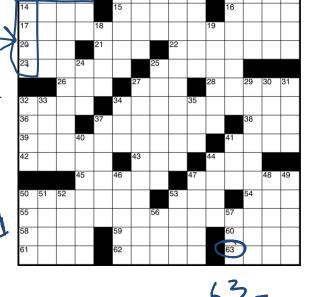
- Generic Search vs. Constraint Satisfaction Problems
- Variables/Features
- Constraints
- CSPs

Variables/Features, domains and Possible Worlds

- Variables / features
 - we denote variables using capital letters A_{\prime}
 - each variable V has a domain dom(V) of possible values

- Variables can be of several main kinds:
 - Boolean: |dom(V)| = 2 colled propositions
 - Finite: the domain contains a finite number of values
 - Infinite but Discrete: the domain is countably infinite not in this
 - Continuous: e.g., real numbers between 0 and 1
 - Possible world: a complete assignment of values to a set of variables $\{A = \emptyset \mid B = 1\}$

Possible Worlds


Examples

-word

Crossword Puzzle:

• variables are words that have to valid be filled in

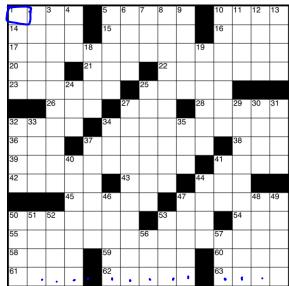
• domains are valid English words

JSO # 10 number of English words for each length to 10 1 1 2 way of some number of words for each length to 10 1 1 2 way of some number of way of some num

150*10 7 cordinality of dom Slide 10

More Examples

Crossword 2:

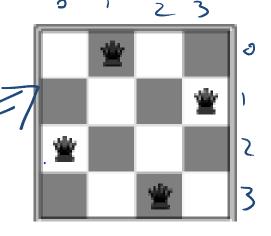

225

- variables are cells (individual squares)
- domains are letters of the alphabet
- possible worlds: all ways of assigning letters to cells

of possible worlds ~26

• Sudoku:

- variables are cells
- domains are numbers between 1 and 9
- possible worlds: all ways of assigning # of possible worlds = 1 numbers to cells


5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
Г	6					2	8	
			4	1	9			5
				8			7	9

More examples

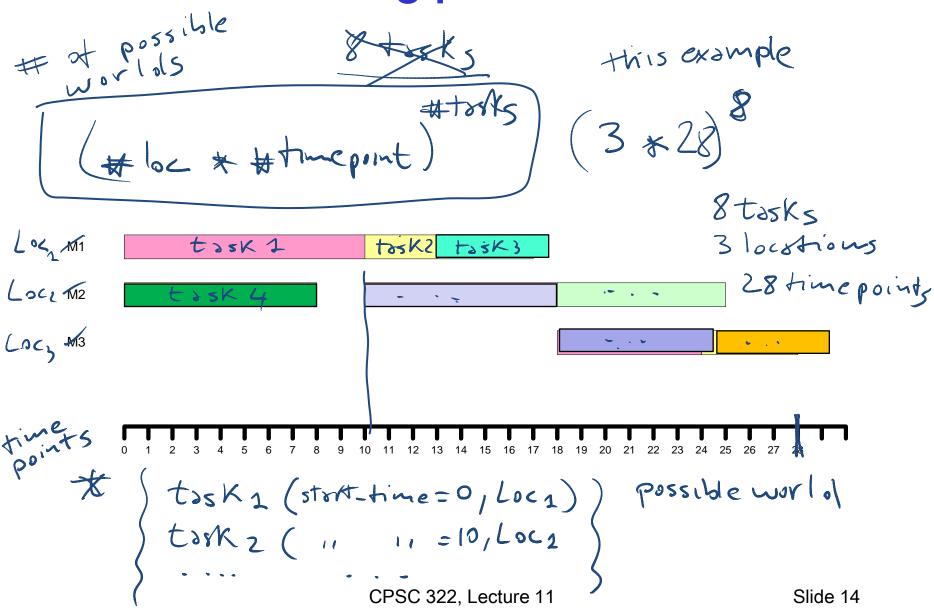
- n-Queens problem

- variable: location of a queen on a chess board
 - there are n of them in total, hence the name
- domains: grid coordinates N^{\leftarrow} (i,)
- possible worlds: locations of all queens

$$\binom{N^2}{n} = \frac{N^2!}{(N^2-n)! \, n!} = \frac{16!}{12! \, 4!} = \frac{1}{12! \, 4!}$$

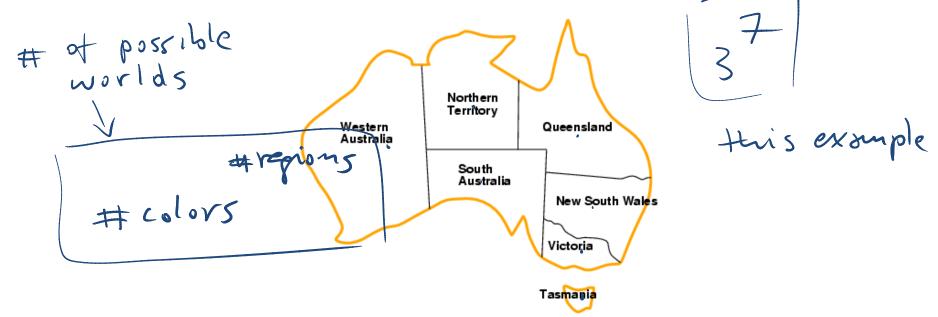
possible ways to choose h location out of n2

More examples


tost 1 tosk 2...

- Scheduling Problem:
 - variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)

• domains are the different combinations of times and


- domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job) (start time, location)
- possible worlds: time/location assignments for each task

Scheduling possible world

More examples....

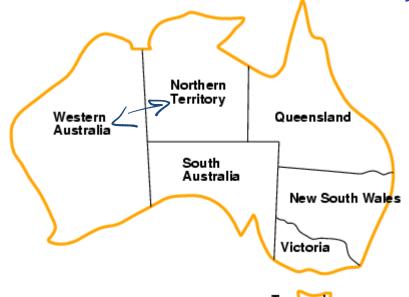
- Map Coloring Problem
 - variable: regions on the map
 - domains: possible colors 4 colors
 - possible worlds: color assignments for each region

Lecture Overview

- Generic Search vs. Constraint Satisfaction Problems
- Variables/Features
- Constraints
- CSPs

Constraints

Constraints are restrictions on the values that one or more variables can take


Unary constraint: restriction involving a single variable

- <u>k-ary constrain</u>t: restriction involving the domains of k different variables A > B
 - it turns out that k-ary constraints can always be represented as binary constraints, so we'll *probably* only talk about this case

Constraints can be specified by

- giving a list of valid domain values for each variable participating in the constraint $\{A=0, B=0\}$ $\{A=1, B=1\}$
- giving a function that returns true when given values for each variable which satisfy the constraint A = B

Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T

Domains D_i = {red,green,blue}

Constraints: adjacent regions must have different colors

or WA ≠ NT,

Constraints (cont.)

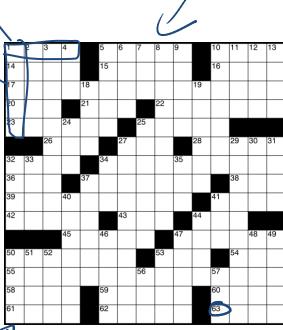
 A possible world satisfies a set of constraints if the set of variables involved in each constraint take values that are consistent with that constraint

• A,B,C domains [1 .. 10]

• A= 1 , B = 2, C = 10<

res not N

Constraint set1 {A = B, C>B}

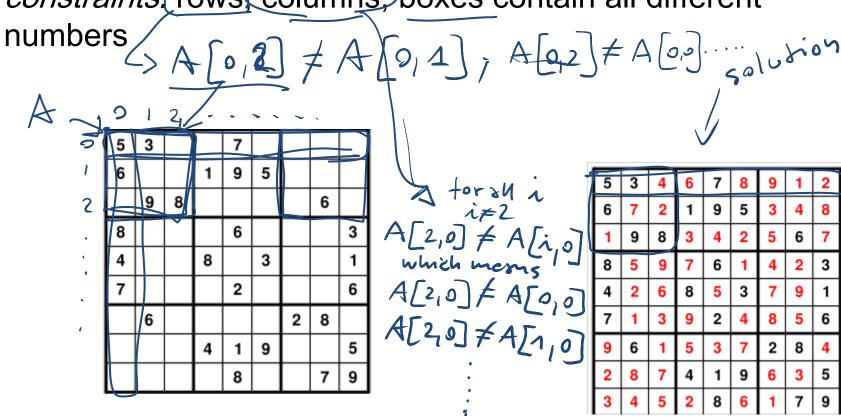

Constraint set2 {A ≠ B, C>B}

Examples

- **Crossword Puzzle:**
 - variables are words that have to be filled in
 - domains are valid English words
 - constraints: words have the same letters at points where they intersect

~ 225 constraints

- Crossword 2:
 - variables are cells (individual squares)
 - domains are letters of the alphabet
 - constraints: sequences of letters form valid English words



Examples

Sudoku:

- variables are cells
- # of constraint = \ # empty-cells *24 domains are numbers between 1 and 9

constraints rows columns boxes contain all different

More examples

n-Queens problem

- variable: location of a queen on a chess board
 - there are n of them in total, hence the name
- domains: grid coordinates
- constraints: no queen can attack another

on the some Column /row P1={x1,41} 42 = 42

Scheduling Problem:

- variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
- domains are the different combinations of times and locations for
- - ✓ certain tasks can be scheduled only in certain locations;
 - ✓ some tasks must come earlier than others; etc.

Lecture Overview

- Generic Search vs. Constraint Satisfaction Problems
- Variables/Features
- Constraints
- CSPs

Constraint Satisfaction Problems: definitions

Definition (Constraint Satisfaction Problem)

A constraint satisfaction problem consists of

- a set of variables
- a domain for each variable
- a set of constraints

posenble worlds

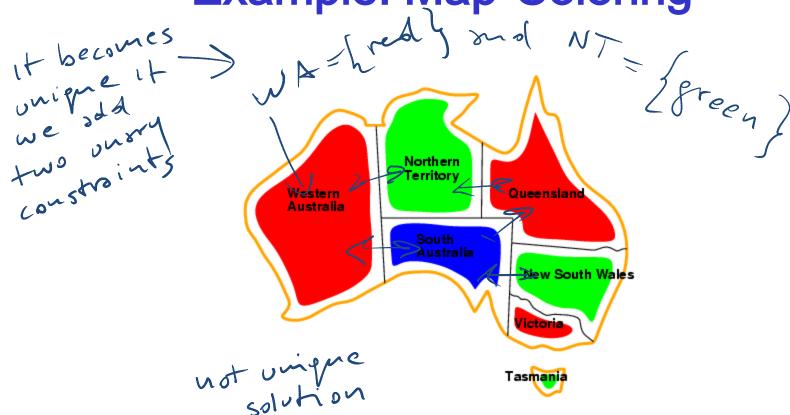
Definition (model / solution)

posable world

A model of a CSP is an assignment of values to variables that satisfies all of the constraints.

Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T


Domains $D_i = \{\text{red,green,blue}\}$

Constraints: adjacent regions must have different colors

e.g., WA # NT, or

(WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

Example: Map-Coloring

Models / Solutions are complete and consistent

assignments, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green

Constraint Satisfaction Problem: Variants

We may want to solve the following problems using a CSP

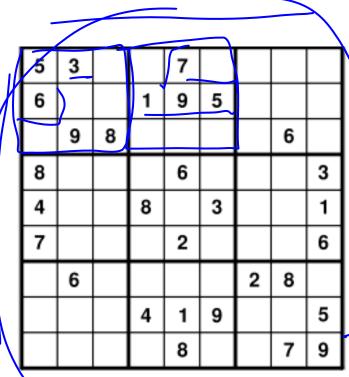
- determine whether or not a model exists
- find a model sor focus
- find all of the models
- count the number of the models
- E find the best model given some model quality
 - this is now an optimization problem
- determine whether some properties of the variables hold in all models

To summarize

- Need to think of search beyond simple goal driven planning agent.
- We started exploring the first Al Representation and Reasoning framework: CSPs

Next class

CSPs: Search and Arc Consistency


(Textbook Chpt 4.3-4.5)

Learning Goals for today's class

- Define possible worlds in term of variables and their domains.
- Compute number of possible worlds on real examples
- Specify constraints to represent real world problems differentiating between:
 - Unary and k-ary constraints
 - List vs. function format.

Verify whether a possible world satisfies a set of *c* constraints (i.e., whether it is a model, a solution)

Extra slide (may be used here?)

Goal state: 9×9 grid completely filled so that

- each column,
- each row, and
- each of the nine 3×3 boxes
- contains the digits from 1 to 9, only one time each

A possible start state (partially completed grid)

									•
5	3	4	6	7	8	9	1	54	
6	7	2	1	9	5	3	4	8	l
1	9	8	3	4	2	5	6	7	Į
8	5	9	7	6	1	4	2	3	l
4	2	6	8	5	3	7	9	1	l
7	1	3	9	2	4	8	5	6	l
9	6	1	5	3	7	2	8	4	l
2	8	7	4	1	9	6	3	5	
3	4	5	2	8	6	1	7	9	l
									11