Finish Search

Computer Science cpsc322, Lecture 10

(Textbook Chpt 3.6)

January, 28, 2008

N

Announcements

- Another practice exercise has been posted. These exercises can really help you with the assignment. Please do check them out!
- New textbook pdf should be online. With parts you need to read clearly marked
- Branch and Bound on Aispace is buggy ☺

- Optimal Efficiency Example
- Pruning Cycles and Repeated states Examples
- Dynamic Programming
- 8-puzzle Applet
- Search Recap

- Optimal Efficiency Example
- Pruning Cycles and Repeated states Examples
- Dynamic Programming
- 8-puzzle Applet
- Search Recap

Pruning Cycles

- Optimal Efficiency Example
- Pruning Cycles and Repeated states Examples
- Dynamic Programming
- 8-puzzle Applet
- Search Recap

Dynamic Programming

Dynamic Programming

This can be used locally to determine what to do. From each node n go to its neighbor which minimizes

But there are at least two main problems:

- You need enough space to store the graph.
- The dist function needs to be recomputed for each goal

- Optimal Efficiency Example
- Pruning Cycles and Repeated states Examples
- Dynamic Programming
- 8-puzzle Applet
- Search Recap

DFS, BFS, A* Animation Example

• The AI-Search animation system

http://www.cs.rmit.edu.au/AI-Search/Product/

- To examine Search strategies when they are applied to the 8puzzle
- Compare only DFS, BFS and A* (with only the two heuristics we saw in class)

nPuzzles are not always solvable

Half of the starting positions for the *n*-puzzle are impossible to resolve (for more info on 8puzzle) http://www.isle.org/~sbay/ics171/project/unsolvable

- So experiment with the AI-Search animation system with the default configurations.
- If you want to try new ones keep in mind that you may pick unsolvable problems

- Optimal Efficiency Example
- Pruning Cycles and Repeated states Examples
- Dynamic Programming
- 8-puzzle Applet
- Search Recap

Recap Search

	Selection	C	Complete	Optimal	Time	Space
DFS	LIFO		Ν	Ν	$O(b^m)$	O(mb)
BFS	FIFO		Y	Y	$O(b^m)$	$O(b^m)$
IDS(C)	LIFO		Y	Y	$O(b^m)$	<i>O(mb)</i>
LCFS	min cost		Y	Y	$O(b^m)$	<i>O(b^m)</i>
BFS	min h		Ν	N	$O(b^m)$	$O(b^m)$
A*	min f=	2	Y	Y	$O(b^m)$	$O(b^m)$
B&B	LIFO + 🕹 pruning		Ν	Y	$O(b^m)$	<u>O(mb)</u>
IDA*	LIFO		Y	Y	$O(b^m)$	O(mb)
MBA*	min f		Ν	N	$O(b^m)$	$O(b^m)$

Recap Search (some qualifications)

	Complete	Optimal	Time	Space
DFS	N	Ν	$O(b^m)$	O(mb)
BFS	Y	Y	$O(b^m)$	$O(b^m)$
IDS(C)	Y	Y	$O(b^m)$	O(mb)
LCFS	Y	Y? <>0	$O(b^m)$	$O(b^m)$
BFS	Ν	Ν	$O(b^m)$	$O(b^m)$
A*	Y	Y?had	$O(b^m)$	$O(b^m)$
B&B	N	Y ?	$O(b^m)$	O(mb)
IDA*	Y	Y	$O(b^m)$	O(mb)
MBA*	N	Ν	$O(b^m)$	$O(b^m)$

Search in Practice

	Complete	Optimal	Time	Space
DFS	Ν	Ν	$O(b^m)$	O(mb)
BFS	Y	Y	$O(b^m)$	$O(b^m)$
IDS(C)	Y	Y	$O(b^m)$	O(mb)
LCFS	Y	Y	$O(b^m)$	$O(b^m)$
BFS	Ν	Ν	$O(b^m)$	$O(b^m)$
A*	Y	Y	$O(b^m)$	$O(b^m)$
B&B	Ν	Y	$O(b^m)$	O(mb)
IDA*	Y	Y	$O(b^m)$	O(mb)
MBA*	N	Ν	$O(b^m)$	$O(b^m)$
BDS	Y	Y	<i>O(b^{m/2})</i>	<i>O(b^{m/2})</i>

(Adversarial) Search: Chess

Deep Blue's Results in the second tournament:

- second tournament: won 3 games, lost 2, tied 1
- 30 CPUs + 480 chess processors
- Searched 126.000.000 nodes per sec
- Generated 30 billion positions per move reaching depth 14 routinely

• Iterative Deepening with evaluation function (similar to a heuristic) based on 8000 features (e.g., sum of worth of pieces: pawn 1, rook 5, queen 10) CPSC 322, Lecture 10 Slide 18

Modules we'll cover in this course: R&Rsys

CSPs: Crossword Puzzles

Daily Puzzles

370 puzzles from 7 sources.

Summary statistics:

- 95.3% words correct (miss three or four words per puzzle)
- 98.1% letters correct
- 46.2% puzzles completely correct

Source: Michael Littman

CSPs: Radio link frequency assignment

Assigning frequencies to a set of radio links defined between pairs of sites in order to avoid interferences.

Constraints on frequency depend on position of the links and on physical environment.

Source: INRIA

Sample Constraint network

CPSC 322, Lec

Planning & Scheduling: Logistics

Dynamic Analysis and Replanning Tool (Cross & Walker)

- logistics planning and scheduling for military transport
- used in the 1991 Gulf War by the US
- problems had 50,000 entities (e.g., vehicles); different starting points and destinations

Start Constraint Satisfaction Problems (CSPs) Textbook 4.1-4.3