Introduction to Artificial Intelligence (AI)

Computer Science cpsc322, Lecture 1

January, 5, 2009

People

Instructor

Giuseppe Carenini (carenini@cs.ubc.ca; office CICSR 129)

Teaching Assistants

- Jacek Kisynski : kisynski@cs.ubc.ca
- Gustavo Lacerda gusl@cs.ubc.ca
- Peter Carbonetto pcarbo@cs.ubc.ca,

Course Essentials(1)

Course web-pages:

www.cs.ubc.ca/~carenini/TEACHING/CPSC322-09/index.html

WebSearch: Carenini Giuseppe

- This is where most information about the course will be posted, most handouts (e.g., slides) will be distributed, etc.
- CHECK IT OFTEN!

Lectures:

- Cover basic notions and concepts known to be hard
- I will try to always post the slides in advance (by noon).
- After class, I will post the same slides inked with the notes I have added in class.

Course Essentials(2)

- **Textbook**: *Artificial Intelligence*, 2nd Edition, by Poole, Mackworth. Still under development (here at UBC).
 - It's free!
 - It's only available electronically
 - We will cover at least Chapters: 1, 3, 4, 5, 6, 8, 9
 - Available on WebCT (wait to print all Chps... they may change a little!)
 - See also http://www.cs.ubc.ca/spider/poole/aibook/

Course Essentials(3)

- WebCT: used for textbook, discussion board
 - Use the discussion board for questions about assignments, material covered in lecture, etc. That way others can learn from your questions and comments!
 - Use email for private questions (e.g., grade inquiries or health problems).
- Alspace : online tools for learning Artificial Intelligence http://aispace.org/
 - Also under development here at UBC!

Course Elements

• Practice Exercises: 0%

• Assignments: 20%

• Midterm: 30%

• Final: 50%

If your final grade is >= 20% higher than your midterm grade:

Assignments: 20%

Midterm: 15% →

• Final: 65% •

Assignments

- There will be five assignments in total
 - Counting "assignment zero", which you'll get today
 - They will not necessarily be weighted equally

Group work

- code questions:
 - √ you can work with a partner
 - ✓ always hand in your own piece of code (stating who your partner was)
- written questions:
 - ✓ you may discuss questions with other students
 - ✓ you may not look at or copy each other's written work
 - ✓ you'll be asked to sign an honour code saying you've followed
 these rules

Assignments: Late Days

- Hand in by 4PM on due day (in class or electronically)
- You get four late days ©
 - to allow you the flexibility to manage unexpected issues
 - additional late days will not be granted except under truly exceptional circumstances
- A day is defined as: all or part of a 24-hour block of time beginning at 4 PM on the day an assignment is due
- Applicable to assignments 1- 4 not applicable to assignment 0, midterm, final!
- if you've used up all your late days, you lose 20% per day

Missing Assignments / Midterm / Final

- Hopefully late days will cover almost all the reasons you'll be late in submitting assignments.
 - However, something more serious like an extended illness may occur
- For all such cases: you'll need to provide a note from your doctor, psychiatrist, academic advisor, etc.
- If you miss:
 - an assignment, your score will be reweighted to exclude that assignment
 - the midterm, those grades will be shifted to the final. (Thus, your total grade = 80% final, 20% assignments)
 - the final, you'll have to write a make-up final as soon as possible.

How to Get Help?

- Use the course discussion board on WebCT for questions on course material (so keep reading from it)
- Go to office hours (newsgroup is NOT a good substitute for this) – times below are still tentative, will be finalized next week

• Giuseppe: Tue 2-3 (CICSR #129)

• Jacek: TBA (learning Center)

Gustavo: TBA (learning Center)

• Peter: TBA (learning Center)

Can schedule by appointment if you can document a conflict with the official office hours

Getting Help from Other Students? (Plagiarism)

- It is OK to talk with your classmates about assignments;
 learning from each other is good
- But you must:
 - Not copy from others (with or without the consent of the authors)
 - Write/present your work completely on your own (code questions exception)
- See UBC official regulations on what constitutes plagiarism (pointer in course Web-page)
- Ignorance of the rules will not be a sufficient excuse for breaking them

Getting Help from Other Students? (Plagiarism)

When you are in doubt whether the line is crossed:

Talk to me or the TA's

Any unjustified cases will be severely dealt with by the Dean's Office (that's the official procedure)

 My advice: better to skip an assignment than to have "academic misconduct" recorded on your transcript and additional penalties as serious as expulsion from the university!

To Summarize

 All the course logistics are described in the course Webpage

www.cs.ubc.ca/~carenini/TEACHING/CPSC322-09/index.html WebSearch: Carenini Giuseppe

(And summarized in these slides)

Make sure you carefully read and understand them!

What is Intelligence?

sapply knowledge) od sprive problem solving reason pottern recognition Planninge 20015 PSC 322. Lecture 1 Slide 14

What is Artificial Intelligence?

Some definitions that have been proposed:

- Systems that think and act like humans
- Systems that think and act rationally

Thinking and Acting Humanly

Model the cognitive functions of human beings

 Humans are our only example of intelligence: we should use that example!

Problems:

• But... humans often think/act in ways that we don't consider intelligent (why?)

emotions >> misory Knowledge tired cognitive limitation memory

 And... detailed model of how people's minds operate not yet available

Thinking Rationally

Rationality: an abstract "ideal" of intelligence, rather than ``whatever humans do''

Example: a rational player will always win or tie when she plays tic-tac-toe, while some humans lose

- Ancient Greeks invented syllogisms: argument structures that always yield correct conclusions given correct premises
 - This led to logic, and probabilistic reasoning which we'll discuss in this course
- But correct sound reasoning is not always enough "to survive"...

Acting (&thinking) Rationally

- This course will emphasize a view of AI as building agents: artifacts that are able to think and act rationally in their environments
- Rationality is more cleanly defined than human behavior, so it's a better design objective
- (Eg: "intelligent" vacuum cleaner: maximize area cleaned, minimize noise and electricity consumption)
 - Agents that can <u>make inferences</u>, <u>plan actions</u> and solve complex problems
 - And when you have a rational agent you can always tweak it to make it irrational!

Why do we need intelligent agents?

Help people 3d8A > preshestron > dearon moting dangerous, boring Lecture 1 Autonomous CPSC 322, Lecture Slide 19

Agents acting in an environment prior knowledge Agent - Solution complex -Actions - problem past experiencesgoals/valuesobservations. Environment ML=Machine Learning CPSC

CPSC 322, Lecture 1

Slide 20

What is an agent?

It has the following characteristics:

- It is situated in some environment
 - does not have to be the real world---can be an abstracted electronic environment
 Medical test / Eyetracking
- It can make observations (perhaps imperfectly)
- It is able to act (provide an answer, buy a ticket)
- It has goals or preferences (possibly of its user)
- It may have prior knowledge or beliefs, and some way of updating beliefs based on new experiences (to reason, to make inferences)

TODO for this week

For Wed: Read Chp 1

For Fri: Assignment 0

- Your first assignment asks you to find two examples of fielded Al agents, and to explain some high-level details about how they work.
 - you get bonus marks if you're the only one in the class to describe a given application.
- The assignment is available from the course web page
- submit electronically and you can't use late days

Examples

Which of these things is an **agent**, and why or why not?

- A soccer-playing robot?
- A rock?
- Machine Translator?
- A thermostat?
- A dog?
- A car?

Which of these things is an **intelligent agent**, and why or why not?

Acting (&thinking) Rationally

This course will emphasize a view of AI as building agents: artifacts that are able to think and act rationally in their environments

- they act appropriately given goals and circumstances
- they are flexible to changing environments and goals
- they learn from experience
- they make appropriate choices given perceptual and computational limitations (sometimes they act without thinking!)
- They gather information (if cost less than expected gain)

Acting Humanly

The **Turing Test**

- Don't try to come up with a list of characteristics that computers must satisfy to be considered intelligent
- Instead, use an operational definition: consider it intelligent when people can't tell a computer apart from other people

The original test involved typing back and forth; the `Total Turing Test includes a video signal to test perception too

- But... is acting just like a person what we really want?
- For example, again, don't people often do things that we don't consider intelligent?